Что такое бесконечность? Самое начало (Происхождение Вселенной и существование Бога). Основной смысл понятия

Наша молодая пара отсутствовала более двух месяцев. Вернувшись на остров, они сразу отправились к Волшебнику.

— С возвращением! — сказал Волшебник.

— Так вы хотите узнать что-нибудь о бесконечности?

— У вас хорошая память, — ответила Аннабел.

— Ну и хорошо, — не стал возражать Волшебник. — Первое, что нам нужно сделать, — это тщательно определить наши термины. Что именно вы понимаете под словом «бесконечное»?

— Для меня оно означает отсутствие конца, — сказал Александр.

— Я бы сказала то же самое, — подтвердила Аннабел.

— Это не вполне удовлетворительно, — сказал Волшебник. — У круга нет ни начала, ни конца, и все же вы не сказали бы, что он бесконечен: он имеет лишь конечную длину, хотя и содержит бесконечное множество точек. Я хочу говорить о бесконечности в точном смысле, используемом математиками. Конечно, этому слову есть и другие применения. Например, теологи часто ссылаются на бесконечность Бога, хотя некоторые из них достаточно честны, чтобы признать, что по отношению к Богу это слово применяется не в таком смысле, как к чему-то другому. Я не хочу третировать теологическое или любое другое нематематическое применение этого слова, но я хочу ясно дать понять, что предмет нашего обсуждения — бесконечность в чисто математическом смысле этого термина. И для него нам необходимо точное определение.

Очевидно, что слово «бесконечное» является прилагательным, и прежде всего мы должны договориться о том, к какому сорту объектов оно применимо. Какого рода объекты можно считать конечными или бесконечными? При математическом применении термина такими объектами являются множества, или совокупности объектов, которые могут быть конечными или бесконечными. Мы говорим, что множество объектов имеет конечное или бесконечное число членов, и теперь нужно сделать эти понятия точными.

Ключевую роль здесь играет понятие однооднозначного соответствия между двумя множествами. Например, два множества — стадо из семи овец и роща из семи деревьев — связаны между собой так, как ни одно из них не связано с грудой из пяти камней, потому что множество из семи овец и множество из семи деревьев можно соединить по парам (например, привязав к каждому дереву по овце) так, что каждая овца и каждое дерево будут принадлежать в точности одной паре. В математической терминологии это значит, что множество из семи овец можно поставить в 1-1-значное соответствие с множеством из семи деревьев. Другой пример. Допустим, что, попав в театральный зал, вы видите, что все места заняты, никто не стоит и никто не сидит ни у кого на коленях, на каждом месте сидит один и только один человек. Тогда, не считая число людей или число мест, вы знаете, что эти числа равны, так как множество людей находится в 1-1-значном соответствии с множеством мест: каждый человек соответствует месту, которое он занимает.

Я знаю, что вы знакомы с множеством натуральных чисел, хотя можете и не знать, что оно так называется. Натуральные числа — это числа 0, 1, 2, 3, 4... То есть натуральное число — это ноль или любое целое положительное число.

— А ненатуральное число существует? — спросила Аннабел.

— Нет, о таком я никогда не слышал, — усмехнулся Волшебник, — и, должен признаться, нахожу твой вопрос очень забавным. Как бы то ни было, с этого момента я буду использовать слово число в смысле натуральное число, если не оговаривается что-то обратное. Если дано натуральное число n, то что значит утверждение, что определенное множество имеет в точности n элементов? Например, что значит утверждение о том, что на моей
правой руке в точности пять пальцев? Это значит, что я могу установить 1-1-значное соответствие между множеством пальцев моей правой руки с множеством целых положительных чисел от 1 до 5, считая, что большой палец соответствует 1, указательный — 2, средний — 3, безымянный — 4 и мизинец — 5. В общем случае для любого целого положительного числа n множество содержит (в точности) n элементов, если можно установить 1-1-значное соответствие между этим множеством и множеством целых положительных чисел от 1 до n.

Множество, содержащее n элементов, называ-ют также п-элементным множеством. Процесс установления 1-1-значного соответствия между n-элементным множеством и множеством целых положительных чисел имеет общераспространенное название — счет. Да, именно в этом и заключается сущность счета. Итак, я объяснил вам, что означает для множества иметь n элементов, где n — целое положительное число. А что, если n = 0? Что
означает для множества иметь 0 элементов? Очевидно, что это значит, что множество вообще не имеет элементов.

— Такие множества существуют? — спросил Александр.

— Есть только одно такое множество, — ответил Волшебник. — Оно называется пустым множеством и является в высшей степени полезным для математиков. Без него постоянно пришлось бы делать исключения, и все стало бы очень громоздким. Например, мы хотим говорить о множестве людей в театре в данный момент. Может случиться, что в этот момент времени в театре вообще нет людей, и в таком случае мы говорим, что множество находящихся в театре людей пусто — точно так же, как говорим о пустом театре. Его нельзя путать с театром вообще! Театр продолжает существовать как театр; просто в нем может не быть ни одного человека. Точно так же, пустое множество существует как множество, но у него нет элементов.

Я вспоминаю чудесный случай. Много лет назад я рассказал о пустом множестве милой леди-музыканту. Она удивилась и спросила: «Математики действительно применяют это понятие?» Я ответил: «Конечно применяют».
Она спросила: «Где?» «Везде», — ответил я. Она задумалась ненадолго и сказала: «О, да. Я полагаю, это похоже на музыкальные паузы». Я думаю, это была очень хорошая аналогия! Один забавный случай связан со Смаллианом. Когда он был студентом Принстонского университета, один из известных математиков во время лекции сказал, что ненавидит пустое множество. В следующей своей лекции он использовал пустое множество. Смаллиан поднял руку и сказал: «Я думал, вы сказали, что не любите пустое множество». «Я сказал, что не люблю пустое множество, — ответил профессор. — Я никогда не говорил, что не использую пустое множество!»

— Вы еще не сказали нам, что вы понимаете под «конечным» и «бесконечным», — сказала Аннабел. — Вы собираетесь объяснять?

— Именно к этому я и подхожу, — ответил Волшебник. — Все, что я сказал вам прежде, ведет к определению этих терминов. Множество конечно, если существует такое натуральное число n, что данное множество содержит в точности n элементов, а это, как мы помним, значит, что данное множество можно поставить в 1-1-значное соответствие с целыми положительными числами от 1 до n. Если такого натурального числа n не существует, то множество называется бесконечным. Это очень просто. Таким образом, 0-элементное множество конечно, 1-элементное множество конечно, 2-элементное множество конечно... и n-элементное
множество конечно, где n — любое натуральное число. Но если для любого натурального числа n ложно, что множество содержит в точности n элементов, то это множество бесконечно. Значит, если множество бесконечно, то для любого натурального числа n, если удалить из данного множества n элементов, в нем еще останутся элементы — фактически еще останется бесконечное число элементов.

— Вы понимаете, почему сказанное верно? Давайте сначала рассмотрим простую задачу. Допустим, я удалил один элемент из бесконечного множества. То, что осталось, обязательно будет бесконечным?

— Кажется, что так! — сказала Аннабел.

— Именно так! — подтвердил Александр.

— Хорошо, вы правы, но можете ли вы это доказать?

Молодые люди задумались, но доказательство вышло трудным для них. Все казалось слишком очевидным, чтобы требовать доказательства. Однако это легко доказать из самих определений терминов «конечное» и «бесконечное». Данные определения необходимо применить для этого. Как же это доказать?

Волшебнику пришлось немного подтолкнуть молодых людей к нужному решению, но, в конце концов, они нашли доказательство, которое его устроило.

— Бесконечные множества, — сказал Волшебник, — обладают некоторыми странными свойствами, которые иногда называют парадоксальными. На самом деле они не парадоксальны, просто слегка поражают при первом
знакомстве с ними. Это хорошо иллюстрирует известный рассказ об отеле Гильберта. Возьмем обычный отель, в котором конечное число номеров, скажем, сто. Допустим, что все номера заняты и в каждом из них один жилец. Приезжает новый человек и хочет снять номер на ночь, но ни он, ни один из жильцов отеля не желает делить свой номер с другим человеком. Тогда невозможно разместить в отеле нового приезжего, так как невозможно установить 1-1-значное соответствие между 101 человеком и 100 комнатами. Однако с бесконечным отелем (если вы можете представить себе такой) ситуация другая. В отеле Гильберта бесконечное число комнат: по одной на каждое целое положительное число. Комнаты пронумерованы последовательно: номер 1, номер 2, номер 3... номер n... и так далее. Можно представить себе, что номера отеля расположены в линейном порядке: они начинаются в определенной точке и продолжаются вправо до бесконечности. Есть первый номер, но нет последнего! Важно помнить, что нет именно последнего номера, точно так же, как нет последнего натурального числа. Далее опять предполагается, что все номера заняты: в каждом номере по одному человеку. Появляется новый приезжий и хочет снять номер. Интересно, что теперь его можно разместить в отеле. Ни он, ни один из жильцов отеля не желает делить свой номер с другим человеком, но каждый жилец отеля согласен поменять свой номер на другой, если его об этом попросят.

— Теперь перейдем к другой задаче, — продолжил Волшебник после обсуждения решения предыдущей задачи. — Рассмотрим тот же отель. Однако теперь вместо одного человека приезжает бесконечное число новых гостей: по одному на каждое целое положительное число n. Назовем старых жильцов отеля P1, Р2... Рn... а новых приезжих Q1 , Q2... Qn... Все Q-персоны желают, чтобы их разместили в отеле. Необычно то, что это возможно!

Как это сделать?

А теперь рассмотрим еще более интересную задачу. Возьмем бесконечное число отелей: по одному на каждое целое положительное число. Отели расположены на прямоугольной площади:

Вся цепь отелей управляется одной администрацией. Все номера во всех отелях заняты. Однажды в целях экономии энергии администрация решает закрыть все отели, кроме одного. Однако для этого нужно разместить всех жильцов всех отелей в единственном отеле — по одному жильцу в одном номере.

Возможно ли это?

— Вы видите, что открывают нам эти за-дачи, — продолжал Волшебник. — Они показывают, что бесконечное множество имеет странное свойство: его можно поставить в 1-1-значное соответствие с его собственной частью. Давайте определим это более точно.

Множество А называется подмножеством множества В, если каждый элемент А является элементом В. Например, если А — множество чисел от 1 до 100, В — множество чисел от 1 до 200, то А есть подмножество В. Если Е — множество четных чисел, а N — множество всех чисел, то Е есть подмножество N. Подмножество А множества В называется собственным подмножеством В, если А есть подмножество В, но не содержит все элементы В. Другими словами, А есть собственное подмножество В, если А есть подмножество В, но В не является подмножеством А. Пусть Р — это множество всех целых положительных чисел {1, 2, 3... n...}, Р- — это множество всех целых положительных чисел без единицы {2, 3... n...}. В первой задаче про отель Гильберта мы видели, что между Р и Р- можно установить 1-1-значное соответствие, и все же Р- является собственным подмножеством Р! Да, бесконечное множество может иметь странное свойство: его можно поставить в 1-1-значное соответствие со своим собственным подмножеством! Это было известно давно. В 1638 г. Галилей показал, что квадраты целых положительных чисел можно поставить в 1-1-значное соответствие с самими этими числами.

Казалось, это противоречит древней аксиоме о том, что целое больше любой из его частей.

— А разве нет? — спросил Александр.

— На самом деле противоречия нет, — ответил Волшебник. — Допустим, что А есть собственное подмножество В. Тогда в одном из смыслов слова «больше»— В больше А, а именно в том смысле, что В содержит все элементы А и еще те элементы, которых нет в А. Однако это не значит, что В численно превосходит А.

— Кажется, я не поняла, — сказала Аннабел. — Что вы имеете в виду под термином «численно превосходит»?

— Хороший вопрос! — сказал Волшебник. — Прежде всего, что, по вашему мнению, я имею в виду говоря, что А имеет ту же самую величину, что и В?

— Я полагаю, это значит, что между А и В можно установить 1-1-значное соответствие, — ответила Аннабел.

— Правильно! А что, по вашему мнению, я имею в виду, говоря, что А по величине меньше В, или что число элементов А меньше числа элементов В?

— Я полагаю, это значит, что можно установить 1-1-значное соответствие между А и собственным подмножеством В.

— Неплохая попытка, — одобрил Волшебник, — но эта версия не подходит. Такое определение прекрасно подошло бы для конечных множеств. Беда в том, что в некоторых случаях можно установить 1-1-значное соответствие между А и собственным подмножеством В, а также можно установить 1-1-значное соответствие между В и собственным подмножеством А. В таком случае вы сможете сказать, что каждое из этих множеств меньше другого? Например, пусть О — множество нечетных чисел, а Е — множество четных чисел. Очевидно, что между О и Е можно установить 1-1-значное соответствие.

Однако можно также установить 1-1-значное соответствие между О и собственным подмножеством Е.

Можно также установить 1-1-значное соответствие между Е и собственным подмножеством О.

Теперь вы, конечно, не скажете, что О и Е имеют одну и ту же величину, и все же О меньше, чем Е, а Е меньше, чем О! Нет, такое определение не работает.

— Тогда какое же определение отношения «...меньше, чем...» подходит для множеств? — спросила Аннабел.

Корректное определение формулируется так. А меньше, чем В, или В больше, чем А, если выполняются следующие условия: (1) можно установить 1-1-значное соответствие между А и собственным подмножеством В; (2) невозможно установить 1-1-значное соответствие между А и всем множеством В.

Чтобы правильно сказать, что А меньше В, необходимо, чтобы выполнялись оба эти условия. Утверждение о том, что А меньше В, означает прежде всего что можно установить 1-1-значное соответствие между А и подмножеством В, а также, что любое 1-1-значное соответствие между А и подмножеством В не исчерпывает всех элементов В.

А сейчас возникает фундаментальный вопрос. Любые два бесконечных множества имеют одну и ту же величину, или есть бесконечные множества разной величины? Это первый вопрос, на который нужно ответить при построении теории бесконечности, и, к счастью, на него ответил Георг Кантор в конце позапрошлого века. Ответ вызвал бурю и породил целое новое направление в математике, ветви которого просто фантастичны!

Я сообщу вам ответ Кантора при следующей встрече. Пока что подумайте сами, в чем состоял этот ответ. Одинаковы ли по величине все бесконечные множества, или среди них есть разные?

Решения

1. Сначала покажем, что при добавлении одного элемента к конечному множеству получается конечное множество. Допустим, что множество А конечно. По определению это значит, что для некоторого натурального числа n множество А имеет n элементов. Если добавить к А еще один элемент, получится множество, имеющее n+1 элементов, которое по определению конечно.

Из этого немедленно следует, что в результате удаления элемента из бесконечного множества В, должно получиться бесконечное множество, ибо, если бы оно было конечным, то, вернув удаленный элемент, мы получили бы исходное множество В, которое было бы конечным, а по условию оно бесконечно.

2. Администрации отеля нужно всего лишь попросить каждого из постояльцев переместиться на один номер вправо. Другими словами, обитатель номера 1 переходит в номер 2, обитатель номера 2 переходит в номер 3...
обитатель номера n переходит в номер n+1. Поскольку в этом отеле нет последней комнаты (в отличие от более нормальных конечных отелей), ни один из постояльцев не окажется на улице. (В конечном отеле обитатель последнего номера оказался бы без места.) После такого перемещения номер 1 освобождается, и вновь прибывший может занять его.

Математически в данном случае нужно установить 1-1-значное соответствие между множеством всех целых положительных чисел с множеством целых положительных чисел, начинающимся с 2. Конечно, менеджер отеля мог бы поступить так же с сотней миллионов новых гостей, если бы они прибыли одновременно. Он просто попросил бы каждого постояльца переместиться на сто миллионов и одну комнату вправо (жилец номера 1 перешел бы в номер 100000001, жилец номера 2 — в номер 100000002 и так далее). Для любого натурального числа n отель мог принять n новых постояльцев, переместив обитателя каждого номера на n номеров вправо и тем самым освободив n первых номеров для новых гостей.

3. Если приезжает бесконечное множество новых гостей Q1 , Q2... Qn... нужно действовать немного иначе. Одно из ложных решений состоит в следующем. Менеджер просит каждого из старых постояльцев переместиться на один номер вправо и вселяет одного из приезжих в пустой номер 1. Затем он опять просит каждого переместиться на один номер вправо и вселяет второго гостя в свободный номер 2. Затем эта процедура повторяется снова и снова бесконечное число раз, и раньше или позже все новые гости вселяются в отель.

Ох, какое же хлопотное это решение!

Ни один человек не занимает номер постоянно, и всех гостей невозможно разместить ни за какой конечный отрезок времени: требуется бесконечное число перемещений. Нет, все можно уладить с помощью единственного перемещения. Можете сказать какого?

Это перемещение состоит в том, что каждый из старых постояльцев удваивает номер своей комнаты, то есть обитатель номера 1 переходит в номер 2, обитатель номера 2 переходит в номер 4, обитатель номера 3 переходит
в номер 6... обитатель номера n переходит в номер 2n. Разумеется, все это делается одновременно, и после такого перемещения все четные номера заняты, а бесконечное число нечетных номеров свободно. Итак, первый новый гость Q1 идет в номер 1, Q2 идет в номер 3, Q3 — в номер 5 и так далее (Qn идет в номер 2n-1).

4. Сначала «пронумеруем» всех постояльцев всех номеров во всех отелях в соответствии со следующим планом:

Итак, каждый постоялец «помечен» целым положительным числом. Затем всех просят выйти из номеров и немного подождать на улице. После этого администрация закрывает все отели, кроме одного, и просит каждого из гостей занять тот номер отеля, который был ему предназначен: постоялец с номером n идет в номер n.

Что такое бесконечность? Казалось бы, такое простое слово, но сколько оно имеет значений и какой смысл несет в себе? А как насчет знака бесконечности?

Все мы неоднократно сталкивались с этим понятием. Но правильно ли мы понимаем, что значит бесконечность? Как употребить это слово в речи, где оно используется еще, чем его можно заменить? В этой статье выясним, что такое бесконечность. В этом на первый взгляд сложном вопросе разобраться достаточно просто.

Значение слова "бесконечность" и его применение в речи

Это слово может иметь несколько значений, в зависимости от вида словаря. Термин "бесконечность" присутствует в математике и физике, философских рассуждениях и астрономических понятиях. Также данное слово имеет и свое особое лексическое значение. В устной и письменной речи оно употребляется не слишком активно, поскольку имеет весьма обширное понимание.

Наиболее часто данное слово, точнее его определение, можно встретить в такой обширной и свободной науке, как философия. Основным значением слова "бесконечность" является отсутствие начала и конца чего-либо.

В устной речи это понятие можно применить в таких предложениях:

  • Кругом была бесконечная мгла.
  • Он устал от бесконечной городской суеты.
  • Пустыня казалась бесконечной.
  • Время тянулось для неё бесконечно.

То есть оно употребляется в тех предложениях, где не могут быть определены точные рамки, границы и пределы чего-либо.

Основной смысл понятия

Если заглянуть в любой из толковых словарей, не суть важно, будет ли это словарь Даля или Ушакова, то можно легко определить лексическое значение слова "бесконечность". В большинстве случаев оно будет иметь одно и то же толкование.

Под этим словом понимается отсутствие пределов измерения каких-либо границ или пространства. К примеру, бесконечность времени. Для определения этого термина в пространстве данное слово можно употребить следующим образом: «Вокруг была снежная бесконечность». В устной речи значение бесконечности употребляется для определения количества (чрезвычайно много) или же времени (очень-очень долго). К примеру, бесконечно стоять в очереди, спорить до бесконечности.

Бесконечность в математике

С этим понятием сталкивались все. Даже если не в устной речи или философских размышлениях, то на уроках математики точно. Любой старшеклассник знает, как выглядит математический знак бесконечности. Но не каждый может его объяснить.

Значение знака бесконечности в математике используется для определения условной величины, которая во множество раз больше любого из взятых наперед чисел. Как в положительном, так и отрицательных значениях. Так, числовой ряд может начинаться от нуля и идти до бесконечности или до минус бесконечности.

Одним словом, в математике можно создать любое число в любом пространстве и значении. Это и будет математическая бесконечность. Обозначается она в данной науке знаком, похожим на лежащую восьмерку.

Существуют также бесконечные десятичные дроби (число Пи является одним из самых известных) и множества.

Бесконечность как философское понятие

Что такое бесконечность в философии? В этой науке данное понятие, как и все прочие философские рассуждения, имеет наиболее глубокий смысл.

Бесконечностью в философии является категория человеческого мышления, которая не может иметь определенных границ, не может контролироваться пространством и временем. Используется данное понятие и для того, чтобы дать характеристику беспредельным, безграничным предметам и явлениям, чему-то неисчерпаемому и неиссякаемому. Значение бесконечности в целом просто и понятно - отсутствие пределов и границ.

Проблемы о вопросах конечности и бесконечности пространства и времени с исторических времен волновали и будоражили философов, заставляя их много рассуждать на данную тему. А в что же в настоящее время? Постановка статуса теории множественных построений, попытка их обобщить и дать им альтернативное понятие - вот что является основным из направлений в исследовании бесконечности у большинства современных философов.

Понятие бесконечности в астрономии

Для многих понятие отсутствия ограничений в пространстве дает моментальную ассоциацию всей бескрайности и безграничности космоса. И это понятно. Ведь если посмотреть на картинки с космическими сюжетами, то будет невозможно определить, где начинается наша Вселенная, а где её конец, и есть ли он вообще.

Именно по этой причине (отсутствия пространственных границ) в астрономии понятие космоса граничит со значением бесконечности. Наверное, сложно будет подобрать другую ассоциацию к понятию Вселенной. Она настолько неизведанная и неопределенная, что еще никто не смог узнать, где её начало, а где конец. Что, собственно, и является бесконечностью.

Еще немного о данном понятии

Что такое бесконечность было выяснено выше. Но что еще можно сказать об этом слове? Где и как правильно его употребить в устной и письменной речи?

Следует иметь в виду, что термин имеет ряд синонимов. Более часто применяются такие как безграничность, беспредельность и необъятность. Также к синонимам данного понятия относят неиссякаемость, вечность, нескончаемость и так далее.

Бесконечность не является физическим объектом. До неё нельзя дотронуться, её невозможно услышать или понюхать. Бесконечность - это не место и не предмет. Это понятие того, что невозможно определить и измерить.

Главное - знать точное определение и значение конкретных слов, и тогда ваша устная и письменная речь всегда будет красивой и понятной.

«То, что мы знаем, – ограниченно, а то, чего мы не знаем, – бесконечно»

Пьер-Симон Лаплас (1749-1827), французский ученый

Безграничная любовь, безмерное счастье, необъятный космос, вечная мерзлота, безбрежный океан и даже нескончаемый урок. В повседневной жизни мы часто называем вещи и явления бесконечными, но часто даже не задумываемся об истинном значении этого понятия. Между тем, с самых древних времён теологи, философы и другие величайшие умы человечества пытались понять её смысл. И только математики дальше всего продвинулись в знаниях о том, что называют бесконечностью.

Что такое бесконечность?

Многое из того, что мы видим вокруг себя, воспринимается нами как бесконечность, но на поверку оказываются вполне конечными вещами. Вот как иногда объясняют детям, насколько велика бесконечность: «Если на огромном пляже собирать по одной песчинке каждые сто лет, то чтобы собрать весь песок на пляже, понадобится вечность». Но на самом деле, количество песчинок не бесконечно. Физически их пересчитать невозможно, зато с уверенностью можно сказать, что их количество не превышает величины, равной отношению массы Земли к массе одной песчинки.

Или другой пример. Многие думают, если встать между двух зеркал, то отражение будет повторяться в обоих зеркалах, уходя вдаль, становясь все меньше и меньше, так что определить, где оно заканчивается, невозможно. Увы, это не бесконечность. Что происходит на самом деле? Ни одно зеркало не отражает 100% падающего на него света. Очень качественное зеркало способно отразить 99% света, но после 70 отражений из них останется только 50%, после 140 отражений – только 25% света и т. д., пока света не станет слишком мало. Вдобавок, большинство зеркал имеет искривления, поэтому многочисленные отражения, которые вы видите, в конце концов «скрываются за поворотом».

Давайте посмотрим, как математика трактует бесконечность. Это очень не похоже на те представления о бесконечности, с которыми вы сталкивались раньше и требует немного воображения.

Бесконечность в математике

В математике различают потенциальную и актуальную бесконечность.

Когда говорят о том, что некоторая величина бесконечнапотенциально, то имеют в виду, что она может быть неограниченно увеличена, то есть всегда имеется потенциальная возможность её наращивания.

Понятие актуальнойбесконечности означает бесконечную величину, которая уже реально существует «здесь и сейчас». Поясним это на примере обычной ПРЯМОЙ.

Пример 1.

Потенциальная бесконечность означает, что есть прямая и её можно непрерывно продолжать (например, прикладывая к ней отрезки). Обратите внимание, здесь делается акцент не на то, что прямая бесконечна, а на то, что её можно бесконечно продолжать.

Актуальная бесконечность означает, что в настоящем времени уже существует вся бесконечная прямая. Но беда в том, что ни один живой человек не видел бесконечной прямой и физически не в состоянии это сделать! Одно дело – иметь возможность бесконечно продлевать прямую, и совсем другое – в реальности создать бесконечную прямую. Это очень тонкое различие и отличает потенциальную бесконечность от актуальной. Уф! Чтобы разобраться с этими бесконечностями, требуется большое воображение! Давайте рассмотрим ещё один пример.

Пример 2.

Предположим, вы решили построить ряд натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10…

В какой-то момент вы дошли до очень большого числа n и считаете, что это самое большое число. В этот момент ваш друг говорит, что ему ничего не стоит к вашему числу n добавить 1 (единицу) и получить еще бóльшее число k = n + 1. Тогда вы, слегка уязвлённый, понимаете, что и вам ничего не может помешать добавить к числу k единицу и получить число k+1. Ограничено ли заранее число таких шагов? Нет. Конечно, у вас с другом может не хватить сил, времени на каком-то шаге m для того, чтобы сделать следующий шаг m + 1, но потенциально вы или кто-то другой может дальше строить этот ряд. В этом случае мы получаем понятие потенциальной бесконечности.

Если же вам с другом удастся построить бесконечный ряд натуральных чисел, элементы которого присутствуют все сразу, одновременно, это будет актуальной бесконечностью. Но дело в том, что никто не может записать все числа, – это неоспоримый факт!

Согласитесь, что потенциальная бесконечность для нас более понятна, потому что её легче вообразить. Поэтому античные философы и математики признавали только потенциальную бесконечность, решительно отвергая возможность оперировать с актуальной бесконечностью.

Парадокс Галилея

В 1638 году великий Галилей задался вопросом: «Бесконечно много – это всегда одинаково бесконечно много? Или могут быть бóльшие и мéньшие бесконечности?»

Он сформулировал постулат, который впоследствии получил название «Парадокс Галилея»: Натуральных чисел столько же, сколько квадратов натуральных чисел, то есть в множестве 1, 2, 3, 4, 5, 6, 7, 8, 9, 10… столько же элементов, сколько в множестве 1, 4, 9, 16, 25, 36, 49, 64, 81, 100…

Суть парадокса заключается в следующем.

Некоторые числа являются точными квадратами(то есть квадратами других чисел), например: 1, 4, 9… Другие же числа не являются точными квадратами, например 2, 3, 5... Значит, точных квадратов и обычных чисел вместе должно быть больше, чем просто точных квадратов. Верно? Верно.

Но с другой стороны: для каждого числа найдётся его точный квадрат, и наоборот – для каждого точного квадрата найдётся целый квадратный корень, поэтому точных квадратов и натуральных чисел должно быть одинаковое количество. Верно? Верно.

Рассуждения Галилея вступили в противоречие с неоспоримой аксиомой, утверждающей, что целое больше любой из своих собственных частей. Он не смог ответить, какая бесконечность больше – первая или вторая. Галилей полагал, что, либо он в чём-то ошибался, либо такие сравнения не применимы для бесконечностей. В последнем он был прав, поскольку три столетия спустя, Георг Кантор доказал, что «арифметика бесконечного отлична от арифметики конечного».

Счётные бесконечности: часть равна целому

Георг Кантор (1845-1918), основоположник теории множеств, стал использовать в математике актуальную бесконечность. Он допускал, что бесконечность существует сразу вся. А раз бесконечные множества есть, и сразу целиком, то с ними можно производить математические манипуляции и даже сравнивать. Поскольку слова «число» и «количество» в случае с бесконечностями неуместны, он ввел термин «мощность». За эталон Кантор взял бесконечные натуральные числа, которых хватит для пересчёта чего угодно, назвал это множество счётным, а его мощность – мощностью счётного множества и стал сравнивать её с мощностями других множеств.

Он доказал, что множество натуральных чисел имеет столько же элементов, сколько и множество чётных чисел! Действительно, запишем друг под другом:

1 2 3 4 5 6 7 8 9 10...

2 4 6 8 10 12 14 16 18 20...

На первый взгляд кажется очевидным, что в первом множестве чисел в два раза больше, чем во втором. Но, с другой стороны, ясно, что вторая последовательность тоже счётна, так как любому её числу ВСЕГДА соответствует строго одно число первой последовательности. И наоборот! Так что вторая последовательность не может исчерпаться раньше первой. Следовательно, эти множества равномощны! Аналогично доказывается, что множество квадратов натуральных чисел (из парадокса Галилея) – счётно и равномощно множеству натуральных чисел. Отсюда следует, что все счётные бесконечности равномощны.

Получается очень интересно: Множество чётных чисел и множество квадратов натуральных чисел (из парадокса Галилея) – являются частью множества натуральных чисел. Но при этом они равномощны. Следовательно, ЧАСТЬ РАВНА ЦЕЛОМУ!

Несчётные бесконечности

Но не всякую бесконечность можно пересчитать так, как это сделали мы с чётными числами и квадратами натуральных чисел. Оказывается, нельзя пересчитать точки на отрезке, действительные числа (выражающиеся всеми конечными и бесконечными десятичными дробями), даже все действительные числа от 0 до 1. В математике говорят, что их количество несчётно.

Рассмотрим это на примере последовательности дробных чисел. Дробные числа обладают свойством, которое отсутствует у целых чисел. Между двумя последовательными целыми числами не существует никаких других целых чисел. Например, между 8 и 9 «не поместится» никакое другое целое число. Но если мы добавим к множеству целых чисел дробные числа, это правило перестанет выполняться. Так, число

будет находиться между 8 и 9. Аналогичным образом можно найти число, расположенное между любыми двумя числами А и В:

Поскольку это действие можно повторять бесконечно, можно утверждать, что между двумя любыми действительными числами всегда будет располагаться бесконечно много других действительных чисел.

Таким образом, бесконечность действительных чисел является несчётной, а бесконечность натуральных чисел – счётной. Эти бесконечности неэквивалентны, но из несчётного множества действительных чисел всегда можно выделить счётную часть, например, натуральные или чётные числа. Поэтому несчётная бесконечность мощнее счётной бесконечности.

философские науки

  • ПОТЕНЦИАЛЬНАЯ БЕСКОНЕЧНОСТЬ
  • ФИЗИКА
  • МАТЕМАТИКА
  • БЕСКОНЕЧНОСТЬ
  • ВСЕЛЕННАЯ
  • АКТУАЛЬНАЯ БЕСКОНЕЧНОСТЬ

Статья посвящена поиску ответа на вопрос, что такое бесконечность? Наверняка, многих мучает этот вопрос, так что же такое бесконечность? Какой смысл у этого слова? Я тоже задумывалась над этим вопросом и попыталась найти на него ответ. Ведь, бесконечность может быть в виде математического знака восьмерки, или же эта вселенная у которой нет конца и начала. Надеюсь, после прочтения статьи, вы сможете понять значения этого слова, которое волнует каждого человека.

  • Жанр делового письма в контексте организационной культуры вуза
  • Специфика и авторская методика оценки эффективности электронных бизнес-коммуникаций

Как в философии появилась бесконечность?

Философия, говоря по определению, как бы сфера плюральности. Философия возможно больше исследует, чем действительное. В этом ее блеск и нищета. Бесконечность появилась уже не из философской сферы, а религиозной. Потому что актуальная бесконечность пришла в европейскую мысль, когда произошло обращение Европы к христианству, пришла ближневосточная культура, библейские предсказания о Боге, монотеизм. То есть Бог бесконечен, бесконечно мудрый, Бог есть бесконечно милостивый (в христианском богословии). Для античности Бог был конечен, вот тогда и начались попытки осмыслить это философии. (Программа Александра Гордона «Осознание и признание бесконечности. Что собой представляет эта величина?»; 2016-04-17)

Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, философия, или повседневная жизнь. Бесконечность появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ. (Доклад профессора, доктора философских наук Кармина Анатолия Соломонович; 2016-04-17)

Потенциальная бесконечность – бесконечно продолжающийся процесс. Например, бесконечное число рядов, бесконечная линия, прямая линия в геометрии.

Затем философы стали думать о том, а нет ли такой бесконечности, которая была бы действительно неограниченна, то есть не имела бы никакой границы в реальности. Это Бог. Бог – это все, все создано богом. Если Бог это все, то его нельзя определить, то есть Бог не имеет никаких пределов, границ не потому, что он практически бесконечен, он теоретически бесконечен. Но как он бесконечен? У него, что потенциальная бесконечность? Он актуально бесконечен.

Понятие актуально бесконечен впервые появилось в философии, то есть какая-то субстанция. Есть конечный мир, а есть бесконечное что-то за пределами нашего мира – трансцендентное.

Вселенная актуально бесконечна в математическом смысле. Если провести прямую линию от земли куда-то в даль, она вся отдана вселенной со своей бесконечностью. А если в вселенная может продолжаться и расширятся, то она потенциально бесконечна. Как устроена вселенная? Вселенная – бесконечное пространство, она трех мерна. (Доклад профессора, доктора философских наук Кармина Анатолия Соломоновича; 2016-04-17)

Также бесконечность неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:
"… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений не задали, всегда потенциально можно поделить на большее число. "

Бесконечность изменяется во времени, но всему этому есть логика. Например, человеческим открытиям, знаниям и бесконечность тоже развивается логически.

Если заглянуть в древнюю философию, то категория бесконечности вообще не отличалась от категории неопределенности. Можно сделать вывод, что бесконечность – это нечто неопределенное. Именно так, слово бесконечность понималось в древности. Отсюда возникло понятие, понятие практическая бесконечность, то есть мы считаем бесконечным то, что практически для нас не имеет видимых границ. Например, у А.С. Пушкина «Евгений Онегин»:

«И бесконечный котильон
Ее томил, как тяжкий сон.»

(Доклад профессора, доктора философских наук Кармина Анатолия Соломоновича; 2016-04-17)

То есть бесконечность – нечто большое, бесконечное.

Как бесконечность стала предметом точной науки?

Если посмотреть на математику XIX века, она представляла собой конфедерацию математических теорий, каждая их которых формировала свой взгляд на бесконечное. Скажем, геометрия, в ней было бесконечное перечисление параллельных прямых, в анализе – это были бесконечно большие или бесконечно малые величины. Но общим подходом было то, что математика в целом понимала бесконечность, как нечто отрицательное, нечто противоположное в конечному. (Программа Александра Гордона «Осознание и признание бесконечности. Что собой представляет эта величина?»; 2016-04-17)

Понятие бесконечности в физике и математике

Рассматривая различные случаи использования понятия бесконечности в науке, нельзя не заметить, что смысл этого понятия меняется в зависимости от обстоятельства, в которых оно употребляется.

В физике бесконечным считается то, что по отношению к изучаемым явлениям чрезвычайно велико или чрезвычайно мало. Например, при изучении движения тел около земной поверхности можно считать расстояние от Земли до Солнца бесконечно большим и соответственно действие солнечного тяготения на них бесконечно малым. Как справедливо отмечает Г. И. Наан, «во всех физических задачах бесконечность означает просто «достаточно далеко». Это могут быть и парсеки (в астрономии), и километры или метры (в электродинамике), и даже миллиардные и значительно меньшие доли сантиметра в теории атомного ядра». (Г. И. Наан Общие вопросы космологии «Труды шестого совещания по вопросам космогонии», Изд в АН СССР, 1959, 256 с.)

Тем самым бесконечность выступает здесь как бесконечное лишь в строго определенном отношении, будучи в других отношениях конечным.

Понимаемую таким образом бесконечность можно назвать «физической» бесконечностью. «Физическая» бесконечность позволяет получать ценные научные выводы, достаточно строгие и точные.

«Физическая» бесконечность – научная абстракция, с помощью которой мы получаем возможность выразить определенные, объективно существующие отношения между вещами. Но она отражает эти отношения односторонне, упрощенно. Поэтому в каждом конкретном случае область ее использования ограничена.

В отличии от абстракции «физической» бесконечности математическое понимание бесконечного выступает, как абстракция «более высокого ранга». (Кармин А. С. Постановка проблемы бесконечности в современной науки. Ленинград, 1965, 124 с.)

Различают два основных вида математической бесконечности: потенциальная и актуальная. Первая, как я уже сказала выше, означает неограниченно продолжающийся процесс, вторая – актуально, налично существующую в виде завершенного целого бесконечную величину. С помощью этих абстракций в различных разделах математики создаются разные математические образы бесконечного. Математическая бесконечность начинает тогда казаться образцом, которому, как идеалу, должна следовать природа. Однако реальная бесконечность природы не должна обязательно подчиняться нашим математическим представлениям о бесконечности. «Идеальная потребность математика вовсе не есть принудительный закон для реального мира» (Ф. Энгельс. Анти-Дюринг. Госполитиздат, 1953, стр. 49).

Бесконечность в математике принимается как число количественная определенность, как бесконечное количество. Но количество «вообще», количество как таковое, безотносительно к качественной определённости есть абстракция. В реальном мире в отличии от мира абстракции количество всегда есть количество какого-то качества. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 124 с.)

Значит, математические абстракции бесконечности имеют реальный смысл лишь как выражение бесконечного количества некоего качества. Но в природе все имеет меру, и всякое качество связано с определенными границами присуще ему количественных изменений.

Как мы вообще приходим к понятию бесконечности?

Допустим, что мы начинаем считать, двигаясь по натуральному ряду чисел. Можно ли путем такого движения и счета получить понятие бесконечности, т. е. можно ли дойти до такого числа, которое необходимо было бы назвать бесконечным? Конечно, нельзя. Сколько бы мы ни двигались по натуральному ряду чисел, мы никогда не дойдем до бесконечности. Следовательно, целых чисел мало для конструкции понятия бесконечности; тут нужны совсем другие подходы.

Если не хватает натурального ряда чисел, возьмем числовое инобытие и посмотрим, не встретим ли мы здесь категорию бесконечного числа. Однако, что такое инобытие? Инобытие числа, если его брать в чистом виде, во всем абсолютно противоположно числу: число есть четкая раздельность, инобытие числа–сплошная неразличимость; число – устойчивость и прерывность, числовое инобытие – неуловимая подвижность и алогическая непрерывность. В таком виде взятое, числовое инобытие никакого отношения к бесконечности не имеет.

Бесконечность прежде всего есть нечто; сущность же инобытия заключается именно в том, что оно не есть нечто (иначе оно было бы бытием, а не инобытием), а существует оно всегда только в отношении числа и бытия. О числовом инобытие нельзя ни того, что он конечен, ни того, что он бесконечен. Об инобытии, если его брать в чистом виде, невозможно никакое утверждение. Оно живет именно размывом и становлением. Таким образом, бесконечного числа на этом пути мы не можем достигнуть. Тут повторяется, собственно говоря, то же бессилие, что и в случае с целым числом. В крайнем случае чистое инобытие приводит к беспредельному становлению, при котором ни о какой новой точке становления нельзя сказать, что эта точка бесконечно удалена от начала становления. Инобытие делает как бы бессильный жест в сторону бесконечности, но не дает самой бесконечности. (Лосев А.Ф. Хаос и Структура. – Москва «Мысль», 1997, 495-496 с.)

О сказанном выше, я задаюсь вопросом, есть ли такое состояние мысли – мысль о бесконечности? Мне кажется, что нет. Это, как и движение по натуральному ряду чисел, есть не конструкция бесконечности, а лишь бессильный жест в сторону бесконечности и полная невозможность сказать о ней что-нибудь положительное.

Бесконечность как философская категория

В наиболее широком смысле понятие бесконечности использует философия. Действительно, диалектический материализм рассматривает бесконечность как ее атрибут.

Рассматривая бесконечность в наиболее широком плане, диалектика материалистическая философия получает возможность выделить то наиболее общее и существенное, что характеризует бесконечность, как атрибут материи и что как или иначе лежит в основе всех научных представлений о ней, поскольку все они являются в конечном счете представлениями об одном и том же. Таким образом, научно философское, диалектик материалистическое понимание бесконечности может рассматривать как обобщение различных абстракций бесконечности, используемых в науке.

Категория бесконечности тесно связана с категориями абсолютного и относительного. Абсолютное и относительное в материальном мире образует нереальное единство. Любые конкретные процессы, состояния, свойства, качества материи являются относительными. Но в их постоянном движении, изменении, превращении выявляется абсолютное.

Бесконечность обнаруживается нами всегда и выступает как форма проявления абсолютного. Признание бесконечности материи, движения, пространства и времени следует именно из признания их абсолютности. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 125 с.)

Таким образом, абсолютное существует не само по себе «в чистом виде», а лишь через относительное. Однако, появляясь в относительности, абсолютное не может быть сведено к нему. Эта противоречивая взаимосвязь и выражается категорией бесконечности. Бесконечность представляет собой не что иное, как способ разрешения противоречия между абсолютным и относительным, способ из взаимного перехода друг в друга.

Особенности постановки проблемы бесконечности в философии и естественных теориях

Как я уже говорила, существует некоторое различие между употреблением понятия абсолютности в философии и его употреблением в естественных теориях.

Философия рассматривает понятие абсолютности в самом общем значении, считая абсолютным лишь то, что непреложно всеобще для мира «в целом», для материи «вообще». В философском понимании абсолютны лишь наиболее общие законы и атрибуты бытия: например, движение, пространство и время, закон перехода количественных изменений в качественные.

Любой естественнонаучный закон в этом более узком смысле абсолютен, ибо иначе он вообще не был бы законом. Каждая конкретная научная теория, имея перед собой всегда определенную конкретную область исследования, считает абсолютным то, что непреложно в данной области, то есть то, сто абсолютно не «вообще», а лишь в отмеченном более узком смысле.

Ясно, что это абсолютное за пределами данной области действительности является относительным. Однако то, что одно и то же может выступать в одном отношении как абсолютное, а в другом как относительное, - это объективный факт. Например, то, что вода закипает при 100°С – это абсолютный, всеобщий закон природы. Но в то же время, будучи зависимым от условий, которые могут быть, а могут и не быть, этот закон оказывается относительным. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 126 с.)

Таким образом, он и абсолютен и относителен, и это не смешение понятий, а отражение диалектической противоречивости объективного мира.

Следовательно, в отличии от философии, понятие абсолютного в рамках всякой естественнонаучной теории есть абстракция. Эта абстракция нужна и полезна, но она теряет силу тогда, когда невозможно отвлечься от изменения данных условий и приходится учитывать новые, иные условия.

Реальная бесконечность природы есть выражение ее абсолютного характера – абсолютного в самом полном и широком смысле слова. Так как в философии речь идет именно об «абсолютном в общем», «безусловно абсолютном», то она вырабатывает наиболее общие понятия бесконечности, отражающие реальную конечность природы в общем виде.

В естественнонаучных теориях понятие бесконечности тоже употребляется как выражение абсолютного его соотношении с относительным. Но абсолютное тут понимается не как «абсолютное вообще», а как «абсолютное при определенных условиях», и поэтому бесконечность выступает тоже не как реальная бесконечность вообще, а как бесконечность при определенных условиях. Бесконечность конкретных свойств и состоянии материи – это не реальная бесконечность. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 127 с.)

Таким образом, наиболее общая постановка проблемы бесконечности дает только философия. Поскольку она относится к конкретным свойствам и состояниям материи, а не ко всей материи вообще.

Бесконечность пространства

Если говорить о пространстве вообще как универсальной форме существования материи, то оно выступает как абсолютное в самом широком смысле. Как говорилось выше, что это абсолютное пространство бесконечно, и бесконечность его есть реальная бесконечностью.

Но если речь идет о физическом пространстве – о пространстве, окружающем нас и обладающем определенной, свойственной ему структурой, - то оно не является «абсолютным вообще».

Значит, то конкретное физическое пространство, которое изучается естественными науками, не бесконечно. Бесконечность есть его научная абстракция, и когда в естествознании говорится о бесконечности пространства, то обычно имеется в виду не реальная бесконечность, а именно эта абстракция. Она основана на абсолютизации пространства и поэтому носит характер «дурной» бесконечности. Она полезна и даже необходима, но ее нельзя принимать за реальную бесконечность пространства. Сфера применяемой этой абстракции ограничена. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 127 с.)

Исходя из этого можно сказать, что на некотором этапе развития науки, когда придется рассматривать пространство в новых отношениях и перед ними раскроются новые, более общие свойства и формы его, тогда ограниченность абстракции будет обнаружена и мы столкнемся с необходимостью считать «наше» физическое пространство конечным.

Парадокс обнаруженный А. Л. Зельмановым, находит рациональное объяснение, что не инвариантность бесконечности, то есть «дурная» пространственная бесконечность – это относительность бесконечности конкретного определенного физического пространства. Значит, о бесконечности можно говорить только в определенных отношениях, абстрагируясь от других отношений, в которых оно является конечным.

Также находит подтверждение в исследованиях А. З. Петрова о том, что реальная бесконечность пространства гораздо сложнее, чем «дурная» бесконечность. Она важна не только в физических, но и философских отношениях. Путем анализа алгебраической структуры уравнений Эйнштейна А. З. Петров показал, что имеются три различных типа пространства. Но если в бесконечной Вселенной имеются пространства различных типов, то «дурная» бесконечность становится бессмысленной.

Если в этих условиях реальная бесконечность пространства отожествляется с его «дурной» бесконечностью, то невозможно считать пространство бесконечным. Это, вероятно, послужило причиной того, что некоторые ученые, стоящие на позициях диалектического материализма, стали пытаться вообще пересмотреть положение марксистской философии о бесконечности пространства. Например, Э. Кольман.

В статье «Современная физика в поисках дальнейшей фундаментальной теории» Э. Кольман считает, что «если только математика, физика, космология низведут – каждая у себя – понятие бесконечности до вспомогательного понятия, до абстрактной экстраполяции, то понятие бесконечности не сможет в философии сохранить свое прежнее положение». («Вопросы философии», 1965, №2, стр. 119) Но, во-первых, Э. Кольман сам признает необходимость использовать это понятие, говоря о бесконечном многообразии материи и бесконечных изменениях ее, то есть считает бесконечность атрибутом материи, а во-вторых, если бесконечность все же является атрибутом материи, то приходится признать необходимость философской категории бесконечности, которая выражает то общее и существенное, что лежит в основе научных абстракций бесконечности. Ограниченность этих абстракций обусловлена тем, что бесконечности вообще нет, а тем, что они являются односторонними, упрощёнными образами ее. Мысль Э. Кольмана верна в том смысле, что философское понятие бесконечности нельзя сводить к «дурной» бесконечности или тому подобной «абстрактной экстраполяции», что философия должна дать более глубокое понятие бесконечности. (Кармин А. С. Постановка проблемы бесконечности в современной науки. - Ленинград, 1965, 128-129 с.

В заключении хочу сказать, что бесконечность или бесконечное столь же познаваемо, как и непознаваемо, и раскрытие его сущности может происходить лишь в виде «бесконечного асимптотического прогресса» (по положению Энгельса), то есть все атрибуты и законы материи оказываются одновременно специфическими и частными для всего мира, например, пространство, время, движение, системность. Когда мы говорим о том, что мир есть единое связное целое, то можно определить, что здесь подразумевается понятие «целое». Поскольку Вселенная бесконечна, то о ней нельзя говорить, как о какой-то замкнутой системе, иначе говоря какую бы конкретную систему любого порядка и масштабов мы ни взяли, она будет входить во Вселенную. По моему суждению, во Вселенной нет единого количественного закона развития всех систем, а положение во Вселенной как едином связном целом означает лишь признание материального единства мир (то есть общность материи, как некой субстанции, как носителя многообразных свойств и отношений), подчинение всех объектов тем всеобщим законам, которые исследуются диалектическим материализмом. А диалектический материализм в свою очередь это система взглядов на окружающий мир.

Список литературы

  1. Г. И. Наан Общие вопросы космологии «Труды шестого совещания по вопросам космогонии», Изд во АН СССР, 1959, 256 с.;
  2. Доклад профессора, доктора философских наук Кармина Анатолия Соломоновича;
  3. Журнал «Вопросы философии», 1965, №2, 119 с.;
  4. Кармин А. С. «Постановка проблемы бесконечности в современной науки»;
  5. Лосев А.Ф. Хаос и Структура. – Москва «Мысль», 1997, 495-496 с.;
  6. Программа Александра Гордона «Осознание и признание бесконечности. Что собой представляет эта величина?»;
  7. Ф. Энгельс. Анти-Дюринг. Госполитиздат, 1953, 49 с.

Бесконечность является абстрактным понятием, используемым, чтобы описать или обозначить нечто бесконечное или безграничное. Это понятие важно для математики, астрофизики, физики, философии, логики и искусства.

Вот несколько удивительных фактов об этом комплексном понятии, которые способны взорвать мозг лбого человека, не очень близко знакомого с математикой.

Символ бесконечности

У бесконечности есть свой собственный специальный символ: ∞. Символ, или лемниската, был введен священнослужителем и математиком Джоном Уоллисом в 1655 году. Слово «лемниската» происходит от латинского слова lemniscus, что означает «лента».

Уоллис, возможно, основал символ бесконечности на римской цифре 1000, рядом с которой римляне раньше указывали «бесчисленный», в дополнение к числу. Также возможно, что символ основан на омеге (Ω или ω), последней букве греческого алфавита.

Интересный факт заклчается в том, что понятие бесконечности появилось и использовалось задолго до того, как Уоллис наградил его символом, который мы используем по сей день.

В четвертом веке до нашей эры джайнистский математический текст под названием Сурья-праджнапти-сутра разделял все числа на три категории, каждая из которых, в свою очередь, разделялась на три подкатегории. В этих категориях были указаны перечислимые, неперечислимые и бесконечные числа.

Апория Зенона

Зенон Элейский, родившийся приблизительно в пятом веке до н. э., был известен парадоксами, или апориями, включающими и понятие бесконечности.

Из всех парадоксов Зенона самым известным является «Ахиллес и Черепаха». В апории черепаха бросает вызов греческому герою Ахиллесу, приглашая его на гонку. Черепаха утверждает, что выиграет гонку, если Ахиллес даст ей преимущество в тысячу шагов. Согласно парадоксу, за то время, что Ахиллес пробежит все расстояние, черепаха сделает в ту же сторону еще сто шагов. Пока Ахиллес пробежит еще сто шагов, черепаха успеет сделать еще десять и так далее по убывающей.

В более простом изложении парадокс рассматривается так: попробуйте пересечь комнату, если каждый следующий шаг в половину меньше предыдущего. Хоть каждый шаг и приближает вас к краю комнаты, вы никогда на самом деле не доберетесь до него, или доберетесь, но на это потребуется бесконечное количество шагов.

Согласно одной из современных трактовок, этот парадокс основан на ложном представлении о бесконечной делимости времени и пространства.

Число пи - пример бесконечности

Отличным примером бесконечности является число пи. Математики используют для числа пи символ, потому что невозможно записать все число целиком. Пи состоит из бесконечного количества чисел. Оно часто округляется до 3,14 или даже 3,14159, но неважно, сколько цифр записано после запятой, ведь невозможно добраться до конца числа.

Теорема о бесконечных обезьянах

Еще один способ думать о бесконечности - рассмотреть теорему о бесконечных обезьянах. Согласно теореме, если дать обезьяне печатную машинку и бесконечное количество времени, в конечном счете у обезьяны получится напечатать «Гамлета» или любое другое произведение.

В то время как многие люди воспринимают теорему как демонстрацию веры в то, что нет ничего невозможного, математики рассматривают ее как доказательство невозможности определенного события.

Фракталы и бесконечность

Фрактал - это абстрактный математический объект, используемый в математике и искусстве, чаще всего он моделирует природные явления. Фрактал записывается как математическое уравнение. Рассматривая фрактал, можно заметить его сложную структуру на любом масштабе. Другими словами, фрактал бесконечно увеличиваем.

Снежинка Коха является интересным примером фрактала. Снежинка выглядит как равносторонний треугольник, образующий замкнутую кривую бесконечной длины. Увеличивая кривую, на ней можно увидеть все новые и новые детали. Процесс увеличения кривой может продолжаться бесконечное количество раз. Несмотря на то что у снежинки Коха есть ограниченная область, она ограниченна бесконечно длинной линией.

Бесконечность разных размеров

Бесконечность безгранична, на все же она поддается измерению, пусть и сравнительному. Положительные числа (больше 0) и отрицательные числа (меньше 0) могут похвастать бесконечными наборами чисел равных размеров. А что происходит, если объединить оба набора? Получится вдвое большой набор. Или еще пример - все четные числа (их бесконечное количество). И все равно это всего лишь половина бесконечного количества всех целых чисел. Другой пример, просто прибавьте единицу к бесконечности. Поучится число на 1 больше бесконечности.

Космология и бесконечность

Космологи изучают Вселенную, неудивительно, что понятие бесконечности играет для них важную роль. Есть ли границы у Вселенной или она бесконечна?

Этот вопрос до сих пор остается без ответа. Наша Вселенная расширяется, но куда? И где предел этого расширения? Даже если у физической Вселенной и существуют границы, у нас все еще есть теория мультивселенной, которая рассматривает существование бесконечного количества Вселенных, в которых могут быть отличные от нашей законы физики.

Деление на ноль

Деления на ноль не существует. Оно невозможно, по крайней мере, в обычной математике. В привычной нам математике единицу, поделенную на ноль, невозможно определить. Это ошибка. Однако так бывает не всегда. В расширенной теории комплексных чисел деление единицы на ноль не вызывает неминуемого коллапса и определяется некоторой формой бесконечности. Другими словами, математика бывает разной, и не вся она ограничивается правилами из учебников.

Loading...Loading...