Архивы задание 19 базовый уровень. Теоремы о делимости произведения и суммы натуральных чисел

Числа и их свойства Базовый уровень Задание №19

№1. Найдите наименьшее четырехзначное число, кратное 15, произведение цифр которого больше 40, но меньше 50 Произведение цифр кратно 5, а значит равно 45 Пусть число имеет вид abcd 40 Слайд 3

№2.Вычеркните в числе 123456 три цифры так, чтобы получившееся трехзначное число было кратно 35 Вычеркиваем цифру 6, цифру 5 оставляем Т.к. число кратно 35, то кратно 5, оканчивается либо 0, либо 5 Выполним подбор 35·3=105 35·5=175 35·7=245 Вычеркнем цифры 1 и 3 3 х 1 0 х В 19 4 5 2

№3. Вычеркните в числе 123456 три цифры так, чтобы получившееся трехзначное число было кратно 27 Проверим какое из чисел 126 и 135 кратно 27 3 х 1 0 х В 11 5 3 1 Т.к. число кратно 27, то кратно 9, Сумма цифр кратна 9 1+2+6=9 1+3+5=9 не кратно 27 135 кратно 27

№4. Найдите наименьшее трехзначное число. Которое при делении на 2 дает остаток 1, при делении на 3 дает остаток 2, а при делении на 5 дает остаток 4 и которое записано тремя различными нечетными цифрами Любое нечетное число при делении на 2 даст в остатке 1. Искомое число может состоять из: Суммы цифр 1+5+9=15, 5+7+9=21 исключаем, как кратные 3 1+3+9 =13 13 – 2 =11 1+9+7 = 17 17-2=15 3+5+9=17 17-2=15 Группа цифр 1,3,9 также исключается 1, 3,5 1,3,7 1, 3,9 1,5,7 1, 5,9 1,9,7 3, 5,9 3,5,7 5,7,9 Числа, которые при делении на 5 дают в остатке 4, оканчиваются либо на 9, либо на 4, но 4 - четное Рассмотрим числа 179, 359, 719, 539 Наименьшее: 179 3 х 1 0 х В 19 7 9 1

№5. Найдите наибольшее пятизначное число, которое записывается только цифрами 0, 5 и 7 и делится на 120 Искомое число оканчивается 0. 3 х 1 0 х В 11 5 0 0 0 7 Т.к число делится на 4, то две последние цифры 0. Т.к. число кратно 3, значит сумма цифр кратна 3 7+5+0+0+0 =12 кратно 3

№6. Найдите четырёхзначное число, кратное 4 , сумма цифр которого равна их произведению Так как а bcd (10с+ d) и d - четное Пусть число – а bcd , тогда а+ b + c + d = a·b·c·d Среди цифр a , b , с и d Не может быть трех единиц, 1+1+1+ d = d –равенство невозможно Среди цифр a , b , с и d нет нулей иначе произведение равно 0 Среди цифр a , b , с и d Не может быть только одна единица, 1+ b + c + d = b·c·d –равенство невозможно

Рассмотрим двузначные числа кратные 4: 12; 16; 24 №6Найдите четырёхзначное число, кратное 4, сумма цифр которого равна их произведению Среди цифр a , b , с и d д ве единицы 1+с+1+2=1 ·с·1·2 Из 1 равенства с+4=2с, значит с=4 1+с+1+6=1 ·с·1·6 1+1+2+4=1 ·1·2·4 Из 2 равенства с+8=6с, с – дробное, чего быть не может 3-е равенство верное Искомые числа: 4112, 1412, 1124

Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 72. В ответе укажите ровно одно такое число. Число кратно 72, значит кратно 9 и кратно 4 и 8 Сумма цифр кратна 9, значит в записи должны быть три двойки и три единицы, т.к. 1+1+1+2+2+2=9 кратно 9 Число из двух последних цифр делится на 4 , значит это 12 Число из трех последних цифр делится на 8 , значит это 112 122112 – одно из чисел 3 х 1 0 х В 19 2 2 1 1 2 1

Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 2457. Приведите пример такого числа. Пусть а bcd – dcba =2457 3 х 1 0 х В 19 4 0 8 5 d= 0 или d =5, т.к. число кратно 5 d =0 – не подходит, иначе второе число трехзначное а bc 5 – 5 cba =2457 а=8 8 bc 5 – 5 cb 8=2457 с =0; b =4

Вычеркните в числе 53164018 три цифры так, чтобы получившееся число делилось на 15. В ответе укажите ровно одно получившееся число. Т.к. число кратно 15, то кратно 5 и 3, значит окачивается либо на 5, либо на 0, и сумма цифр кратна 3 Вычеркнем последние две цифры, тогда число оканчивается цифрой 0 5+3+1+6++4+0= 19 . Можно вычеркнуть либо 1, либо 4 3 х 1 0 х В 19 3 0 4 0 5 6

В данной статье речь пойдёт о решении задачи 19 из варианта досрочного профильного ЕГЭ по математике, предлагавшегося для решения школьникам в 2016 году. Решение задачи 19 из ЕГЭ по математике (профильный уровень) традиционно вызывает наибольшие затруднения у выпускников, ведь это последняя, а потому обычно самая сложная задача из экзамена. По крайней мере, такое впечатление часто складывается в умах школьников, готовящихся к ЕГЭ. Но на самом деле ничего очень сложного в этих задачах нет. Посмотрите, например, как легко решается следующая задача 19 из профильного ЕГЭ по математике.

Не смущайтесь термина «хорошее» множество. Это типично для составителей вариантов ЕГЭ по математике. Когда не хватает слов, приходится использовать слова не по их прямому назначению.

Решение задачи 19 из профильного ЕГЭ по математике под буквой А

Перейдём к решению. Отвечаем на вопрос под буквой А. Является записанное множество хорошим? Предположим, что да. Если это действительно так, то это самый простой случай для нас. Ведь в этом случае требуется лишь привести пример разбиения этого множества на два множества, суммы элементов которых одинаковы. В противном случае пришлось бы доказывать принципиальную невозможность нужного разбиения. А это уже гораздо сложнее. Ну а поскольку это лишь задание под буквой А, можно надеяться, что оно достаточно простое. Итак, попытаемся разбить наше множество на два подмножества, суммы элементов в которых будут одинаковы.

К счастью, чтобы это сделать, не нужно быть Эйнштейном. Берём самое очевидное и интуитивное решение. Группируем элементы исходного множества в пары: первый с последним, второй с предпоследним и так далее:

Последняя парочка будет состоять из двух чисел: 249 и 250. Всего таких парочек получится 50. Сумма чисел в каждой парочке равна 499. А дальше берите какие угодно 25 парочек в первое множество, остальные 25 — во второе множество, и получите требуемое разбиение. Итак, ответ на вопрос под буквой А — да!

Ответ на вопрос под буквой Б из задачи 19 ЕГЭ по математике (профильный уровень)

Переходим к вопросу под буквой Б. Задание то же самое, только множество другое. Поэтому думается, что авторы-составители должны были здесь проявить оригинальность. Так что, скорее всего, это множество уже не будет хорошим. Если это так, то просто примером в данном случае ограничиться не получится, придётся всё доказывать. Ну что ж, попробуем.

Вообще говоря, если вдуматься в задание, то решение приходит само собой. Нам требуется разбить данное множество на два подмножества, суммы элементов в каждом из которых равны. Ну и, в общем, тут не нужно быть Стивином Хокингом, чтобы понять, что ключ к решению в том, чтобы найти, чему должны быть равны эти суммы! А для этого нужно посчитать сумму элементов нашего исходного множества.

Посмотрите внимательно. Перед нами классическая геометрическая прогрессия со знаменателем , первым членом и элементами. Сумма всех элементов такой прогрессии определяется по известной формуле:

Это означает, что если бы мы разбили наше множество на два подмножества с одинаковой суммой элементов в каждом из них, то эта сумма оказалась бы равной . А это нечётное число! Но ведь все элементы нашего множества — это степени двойки, то есть числа безусловно чётные. Вопрос. Может ли получиться нечётное число, если складывать чётные числа? Конечно, нет. То есть мы доказали невозможность такого разбиения. Итак, ответ к вопросу под буквой Б из решения задачи 19 из ЕГЭ по математике (профильный уровень) — нет!

Решение задачи 19 из ЕГЭ по математике (профильный уровень) под буквой В

Ну и наконец, переходим к вопросу под буквой В. Сколько же четырёхэлементных хороших множества содержится в множестве {1; 2; 4; 5; 7; 9; 11}? Да… Тут уже придётся задуматься более серьёзно. Ну конечно! Ведь это последнее, как говорят некоторые видеоблогеры, самое жёсткое задание в профильном ЕГЭ по математике. Так как же его решить?

Доводилось ли вам когда-нибудь слышать об осознанном переборе? Этот метод применяется тогда, когда возможных вариант не очень много. Но при этом варианты перебираются не как попало, а в определённой последовательности. Это нужно для того, чтобы не упустить из виду ни одного возможного варианта. Плюс, по возможности, при переборе исключаются из рассмотрения невозможные варианты. Итак, как же нам свести это задание к осознанному перебору?

Введём фильтр, ограничивающий перебор:

  • Заметим сразу, что суммы искомых хороших четырёхэлементных подмножеств должны быть чётными, иначе их нельзя разбить на подмножества с одинаковыми суммами элементами. При этом минимально возможная сумма равна 1+2+4+5 = 12, а максимально возможная сумма равна 5+7+9+11 = 32. Таких сумм 11 штук.
  • Примем также во внимание, что чётные числа 2 и 4 должны либо одновременно входить в хорошее четырёхэлементное множество, либо одновременно не входить в него. В противном случае только одно из чисел четырёхэлементного множества чётное, поэтому сумма элементов такого множества не будет чётной.
  • Поскольку порядок расположения элементов в искомых хороших четырёхэлементных множествах не важен, договоримся, что элементы в этих множествах будут у нас расположены по возрастанию.

Рассматриваем все возможные суммы:

  1. Сумма 12: {1; 2; 4; 5}.
  2. Сумма 14: {1; 2; 4; 7}.
  3. Сумма 16: нет вариантов.
  4. Сумма 18: {2; 4; 5; 7}.
  5. Сумма 20: нет вариантов.
  6. Сумма 22: {2; 4; 7; 9}, {2; 4; 5; 11}.
  7. Сумма 24: {1; 5; 7; 11}.
  8. Сумма 26: {2; 4; 9; 11}.
  9. Сумма 28: нет вариантов.
  10. Сумма 30: нет вариантов.
  11. Сумма 32: {5; 7; 9; 11}.

Вот и получилось у нас всего 8 множеств. Других вариантов нет. То есть ответ к заданию под буквой В — 8.

Вот такое решение задачи 19 из ЕГЭ по математике (профильный уровень). Для тех, кто только начинает готовиться к сдаче профильного ЕГЭ по математике, оно можно показаться сложным. Но на самом деле для решения таких задач требуется использование одних и тех же способов и приёмов. Нужно только овладеть ими, и все эти задачи будут казаться вам простыми, и вы их решите на экзамене без всяких проблем. Я вас мог этому научить. Подробную информацию обо мне и моих занятиях вы можете найти на .

Задание №19 из базового ЕГЭ по математикеmathvideourok.moy.su

Признаки делимости на 2 и 4:

Число делится на 2, если оно заканчивается четной
цифрой или нулём.
Числа 2346 и 3650 - делятся на 2. Число 4521 - не
делится на 2.
Число делится на 4, если две последние его
цифры нули или образуют число, делящееся на 4. В

Числа 31700 и 16608 -делятся на 4. 215634 – не
делится на 4.

Признаки делимости на 3 и 9:

На 3 делятся только те числа, у которых сумма
цифр делится на 3.
Числа 17835 и 5472 – делятся на 3. Число 105499 – не
делится на 3.
На 9 делятся только те числа, у которых сумма
цифр делится на 9.
Числа 2376 и 342000 – делятся на 9. Число 106499 – не
делится на 9.

Признаки делимости на 8 и 6:

Число делится на 8, если три последние цифры его
нули или образуют число, делящееся на 8. В
остальных случаях - не делится.
Числа 125000 и 111120 – делятся на 8. Числа 170004 и
124300 – не делятся на 8.
Число делится на 6, если оно делится одновременно
на 2 и на 3. В противном случае - не делится.
Числа 126 и 254610 – делятся на 6. Числа 3585 и 6574 не делятся на 6.

Признаки делимости на 5 и 25:

На 5 делятся числа, последняя цифра которых 0
или 5. Другие - не делятся.
Числа 245 и 56780 – делятся на 5. Числа 451 и 678 – не
делятся на 5.
На 25 делятся числа, две последние цифры которых
нули или образуют число, делящееся на 25 (т. е.
числа, оканчивающиеся на 00, 25, 50 или 75). Другие
не делятся.
Числа 7150 и 345600 – делятся на 25. Число 56755 – не
делится на 25.

Признаки делимости на 10, 100 и 1000:

На 10 делятся только те числа, последняя цифра
которых нуль, на 100 - только те числа, у которых
две последние цифры нули, на 1000 - только те, у
которых три последние цифры нули.
Число 34680 – делится на 10. Число 56700 – делится на
100 и на 10. Число 87549000 - делится на 10, 100 и 1000.
Числа 75864, 7776539 и 9864032 – не делятся на 10, 100 и
1000.

Признак делимости на 11:

На 11 делятся только те числа, у которых сумма цифр,
занимающих нечетные места, либо равна сумме цифр,
занимающих четные места, либо разнится от нее на число,
делящееся на 11.
Число 103785 делится на 11, так как сумма цифр, занимающих
нечетные места, 1+3+8=12 равна сумме цифр, занимающих четные
места 0+7+5=12.
Число 9163627 делится на 11, так как сумма цифр, занимающих
нечетные места, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, занимающих
четные места, есть 1 + 3 +2 =6; разность между числами 28 и 6 есть
22, а это число делится на 11.
Число 461025 не делится на 11, так как числа 4+ 1 + 2 = 7 и б +0 +
5=11 не равны друг другу, а их разность 11 -7 = 4 на 11 не делится.

Управление образования администрации муниципального района

"Бабаюртовский район"

Семинар методического объединения математики.

Тема: Решение заданий №19 из базовой части ЕГЭ -2017

(Цифровая запись числа).

Выступил: Териков Рамазан Пашаевич,

учитель математики и информатики

МКОУ”Бабаюртовская СОШ№2 им.Б.Т. C атыбалова”

24.01.2017 год.

Решение заданий №19 из базовой части ЕГЭ -2017(Цифровая запись числа)

Начиная с 2017 года в базовой части ЕГЭ по математике ввели задания на признаки делимости.

Почему то дети хорошо запоминают признаки делимости на 2 и на 5, а остальные признаки забывают.

1.Натуральное число делится на 2 тогда и только тогда, когда последняя цифра числа оканчивается четной цифрой т.е 0, 2, 4, 6 или 8.

2.Натуральное число делится на 5 тогда и только тогда, когда последняя цифра числа оканчивается на 0 или на 5.

3. Натуральное число делится на 3 или на 9 тогда и только тогда когда сумма его цифр делится соответственно на 3 или на 9.

4. Натуральное число делится на 4 или 25 тогда и только тогда когда число, образованное последними его двумя цифрами нули или делится соответственно

на 4 или 25.

Теперь рассмотрим признаки делимости некоторые простые числа:

5. Натуральное число делится на 7 тогда и только тогда когда разность между числом десятков и удвоенной цифрой единиц делится на 7.

6. Натуральное число делится на 11 тогда и только тогда когда разность между суммой цифр, стоящих на четных местах и суммой цифр, стоящих на нечетных местах делится на 11

7.Натуральное Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13

8.Натуральное число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17

9.Натуральное число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19.

10. Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23.

11.Натуральное число делится на тогда и только тогда, когда число десятков,

сложенное с утроенным числом единиц, делится на 29.

Немного об общих свойствах.

Если m, k не имеют общих делителей, кроме 1, и число n делится на m и делится на k , то n делится на mk .. Если же наибольший общий делитель m и k выше 1, такой признак использовать нельзя. Например, если число одновременно делится на 4 и 6, то не факт, что оно делится на 24 (пример - 36).

Только что названный признак можно обобщить так: если число n делится на m и делится на k , то n делится на наименьшее общее кратное m и k . Например, если число делится на 4 и на 6, то оно делится на 12.

Пусть p = kq , где k > 1 - натуральное число. Если n делится на p , то n делится на q , а если n не делится на q , то n не делится и на p . Яркий пример: нечётное число не делится на 4, поскольку оно не делится на 2, в итоге тут можно даже не использовать правило последней пары цифр, названное выше (в случае чётного числа для проверки делимости на 4 придётся применять то правило).

Теперь, рассмотрим признаки делимости на некоторые составные числа:

на 6, 8. 12,18,20,24.

1. Натуральное число делится на 8 тогда и только тогда когда число, образованное последними его тремя цифрами нули или делится на 8.

2. Натуральное число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

3. Натуральное число делится на 18 тогда и только тогда, когда оно делится на 2 и на 9.

4. Натуральное число делится на 20 тогда и только тогда, когда оно делится на 4 и на 5.

5. Натуральное число делится на 24 тогда и только тогда, когда оно делится на 3 и на 8.

А теперь рассмотрим конкретные примеры из ЕГЭ. Начнем с самых простеньких.

1 . Вычеркните в числе 141565041 три цифры так, чтобы получившееся число делилось

на 30. В ответе укажите ровно одно получившееся число.

Решение: Натуральное число делится на 30 тогда и только тогда, когда оно

делится на 3 и на 10 т.к 3 и 8 - взаимно простые числа. Поэтому последней цифрой должен быть обязательно 0, тогда последние две цифры уходят сразу.

Делимость на 10 выполнилось, осталось выполнить делимость на 3 и вычеркнуть одно число.

Сумма оставшихся цифр равна 1+4+1+5+6+5+0=22.Значит, можно вычеркнуть либо1(в любой позиции) либо 4. Тогда получаются три числа:415650, 145650 и 115650.В ответе укажем одно из них.

2. Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.

Решение:

Трехзначное число, сумма цифр которых равно 20 можно можно записать следующими способами (позиция цифр не имеет значение т.к. речь идет о сумме цифр):

Для удобства начнем с чисел, начинающихся с 9, таких у нас четыре, числа, начинающихся с цифры 8 две и одно число начинается с цифры 7.

9 92, 9 83, 9 74, 9 65 8 84, 8 75, 8 66, 7 76.

И так таких чисел всего 8. Из них 1,2,4,6 явно видно, что сумма квадратов цифр не делятся на 3(так кА по 2 цифры кратно 3, а одна не кратно 3.

3. Найдите трёхзначное натуральное число, большее 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число.

Решение:

Число делится на 5 и 6 если оно делится на 30.

Ненулевые одинаковые остатки при делении на 5 и 6 могут быть только 1,2,3 или 4.

Потому искомые числа могут иметь вид: 30 k +1, 30 k +2, 30 k +3, или30 k +4.

Так как 400:3= 13,(3), то первое искомое трехзначное число вида 30 k +1 равно 421.Дальше составим список:

421,451,481,511,541,571,601,631,661,691,721,751,781,811,841,871,901,931,961,991.

422,452,482,512,542,572,602,632,662,692,722,752,782, 812,842,872,902,932,962,992

423,453,483,513,543,573,603,633,663,693,723,753,783, 813,843,873,903,933,963,993

424,454,484,514,544,574,604,634,664,694,724,754,784, 814,844,874,904,934,964,994

Я понимаю, что слишком много чисел получилось, но они легко составляются.

Теперь осталось выполнить последнее условие: первая слева цифра является средним арифметическим двух других цифр. Это легко подобрать устно из этого списка, это числа: 453, 573 и 693. В ответе нужно указать одно из них.

4. Найдите трёхзначное число, кратное 25, все цифры которого различны, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.

Пояснение.

Чтобы число делилось на 25, оно должно заканчиваться на 00, 25, 50 или 75.Выпишем все такие трехзначные числа:

100,125,150,175,200,225, 250,275,300,325,350.475,500,525,550,575,600,625,650,

675,700,725,750,775,800,825,850,875,900,925,950,975.

Учитывая, что все цифры различны, из этого списка остаются: 125,150,175, 250,275, 325,350,475, 525, 575, 625,650,675, 725,750, 825,850,875, 925,950,975.

Легко проверить, что среди этих чисел только у следующих чисел сумма квадратов делится на 3: 125,175, 275, 425,475,725,825 и 875.

Осталось отсеять из них числа, сумма квадратов которых кратно 9. В итоге остаются числа 125, 175, 275, 725, 825, 875 . В ответе укажем одно из них.

5. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите какое-нибудь одно такое число.

Пояснение.

Число делится на 88, если оно делится на 8 и на 11. Признак делимости на 8: число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8. Признак делимости на 11: число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо разность этих сумм делится на 11. Используя признак делимости на 8, и учитывая, что все цифры искомого числа должны быть чётны и различны получаем, что последними цифрами числа могут быть: 024, 048, 064, 208, 240, 264, 280, 408, 480, 608, 624, 640, 648, 680, 824, 840, 864. Используя признак делимости на 11 получим, что условию задачи удовлетворяют числа: 6248, 8624, 2640.

Ответ: 2640, 6248 или 8624.

Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.

Решение.

Разложим число 20 на слагаемые различными способами:

20 = 9 + 9 + 2 = 9 + 8 + 3 = 9 + 7 + 4 = 9 + 6 + 5 = 8 + 8 + 4 = 8 + 7 + 5 = 8 + 6 + 6 = 7 + 7 + 6.

При разложении способами 1−4, 7 и 8 суммы квадратов чисел не кратны трём. При разложении пятым способом сумма квадратов кратна девяти. Разложение шестым способом удовлетворяет условиям задачи. Таким образом, условию задачи удовлетворяет любое число, записанное цифрами 5, 7 и 8, например, число 578.

Ответ: 578|587|758|785|857|875

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ - 2015.

Найдите трёхзначное натуральное число, большее 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите какое-нибудь одно такое число.

Решение.

Число имеет одинаковые остатки при делении на 5 и на 6, следовательно, число имеет тот же остаток при делении на 30, причём этот остаток не равен нулю и меньше пяти. Таким образом, искомое число может иметь вид: .

При . Ни одно из чисел не больше 400

При : 421, 422, 423, 424. Первая слева цифра не является средним арифметическим двух других цифр

При : 451, 452, 453, 454. Число 453 удовлетворяет всем условиям задачи.

Также подходят числа 573 и 693.

Ответ: 453,573, 693.

Ответ: 453|573|693

Найдите четырёхзначное число, кратное 22, произведение цифр которого равно 24. В ответе укажите какое-нибудь одно такое число.

Решение.

Чтобы число abcd делилось на 22, оно должно делиться и на 2, и на 11. Произведение цифр 24 можно представить многими способами, основой которых являются произведения - . Признак делимости на 11: Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11. Таким образом, a+c=b+d или a+c=b+d+11 или a+c+11=b+d. Кроме того, раз число делится на 2, то оно должно быть четным. Согласно перечисленным признакам можно подобрать следующие числа: 4312, 2134, 1342, 3124

Ответ: 2134|4312|1342|3124

Найдите трёхзначное число, кратное 25, все цифры которого различны, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.

Решение.

Чтобы число делилось на 25, оно должно заканчиваться на 00, 25, 50 или 75. Наше число на 00 заканчиваться не может, поскольку все его цифры должны быть различны. Выпишем все трёхзначные числа, заканчивающиеся на 25, 50 или 75, все цифры которых различны, найдём сумму квадратов их цифр, проверим, делится ли она на 3 и на 9.

Сумма цифр не делится на 3.

Сумма цифр делится на 3, но не делится на 9. Это искомое число.

Сумма цифр не делится на 3.

Сумма цифр делится на 3, но не делится на 9. Это искомое число.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр делится на 3 и на 9.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр делится на 3, но не делится на 9. Это искомое число.

Сумма цифр не делится на 3.

Сумма цифр делится на 3, но не делится на 9. Это искомое число.

Сумма цифр не делится на 3.

Сумма цифр делится на 3, но не делится на 9. Это искомое число.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Сумма цифр не делится на 3.

Loading...Loading...