Четверг день тора. Языческие боги и названия дней недели

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Частота волны в общем виде, зависит только от того, с какой скоростью двигается приемник

Как только волна пошла от источника, скорость ее распространения определяется только свойствами среды, в которой она распространяется, - источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера .

Для того чтоб был более понятным, рассмотрим пример на машине с сиреной.

Предположим для начала, что машина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия - области повышенного давления, - чередующиеся с разряжениями. Пики сжатия - «гребни» акустической волны - распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки. Так вот, пока машина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только машина тронется с места в вашу сторону, добавится новый эффект . За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если машина с звуковым сигналом поедет в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

Имеет важное значение в астрономии, гидролокации и радиолокации. В астрономии по доплеровскому сдвигу определенной частоты испускаемого света можно судить о скорости движения звезды вдоль линии ее наблюдения. Наиболее удивительный результат дает наблюдение доплеровского сдвига частот света удаленных галактик: так называемое красное смещение свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием. Вопрос о том, расширяется ли Вселенная подобным образом или красное смещение обусловлено чем-то иным, а не «разбеганием» галактик, остается открытым.

Энциклопедичный YouTube

  • 1 / 5

    Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.) русск. »). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

    Доплер использовал этот принцип в астрономии и провел параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году . Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

    Критика публикации Доплера

    Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель , 1800 год) и ультрафиолетового излучения (И. Риттер , 1801 год) .

    Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль . Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется .

    Экспериментальная проверка

    В 1845 году голландский метеоролог из Утрехта , Христофор Хенрик Дидерик Бёйс-Баллот , подтвердил эффект Доплера для звука на железной дороге между Утрехтом и Амстердамом . Локомотив, достигший невероятной на то время скорости 40 миль/ч (64 км/ч), тянул открытый вагон с группой трубачей. Баллот слушал изменения тона во время движения вагона при приближении и удалении. В тот же год Доплер провел эксперимент, используя две группы трубачей, одна из которых двигалась от станции, а вторая оставалась неподвижной. Он подтвердил, что, когда оркестры играют одну ноту, они находятся в диссонансе . В 1846 году он опубликовал пересмотренную версию своей теории, в которой он рассматривал как движение источника, так и движение наблюдателя. Позднее в 1848 году французский физик Арман Физо обобщил работы Доплера, распространив его теорию и на свет (рассчитал смещение линий в спектрах небесных светил) . В 1860 году Эрнст Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект Доплера. Первое соответствующее наблюдение удалось провести в 1868 году Уильяму Хаггинсу .

    Прямое подтверждение формул Доплера для световых волн было получено Г. Фогелем в 1871 году путём сравнения положений линий Фраунгофера в спектрах , полученных от противоположных краёв солнечного экватора. Относительная скорость краёв, рассчитанная по значениям измеренных Г. Фогелем спектральных интервалов, оказалась близка к скорости, рассчитанной по смещению солнечных пятен .

    Сущность явления

    Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

    Математическое описание явления

    Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

    где - угловая частота , с которой источник испускает волны, c {\displaystyle c} - скорость распространения волн в среде, v {\displaystyle v} - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

    Частота, регистрируемая неподвижным приёмником

    Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

    ω = ω 0 (1 + u c) , {\displaystyle \omega =\omega _{0}\left(1+{\frac {u}{c}}\right),} (2)

    где u {\displaystyle u} - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

    Подставив вместо ω 0 {\displaystyle \omega _{0}} в формуле (2) значение частоты ω {\displaystyle \omega } из формулы (1), получим формулу для общего случая:

    ω = ω 0 (1 + u c) (1 − v c) . {\displaystyle \omega =\omega _{0}{\frac {\left(1+{\frac {u}{c}}\right)}{\left(1-{\frac {v}{c}}\right)}}.} (3)

    Релятивистский эффект Доплера

    ω = ω 0 ⋅ 1 − v 2 c 2 1 + v c ⋅ cos ⁡ θ {\displaystyle \omega =\omega _{0}\cdot {\frac {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}{1+{\frac {v}{c}}\cdot \cos \theta }}}

    где c {\displaystyle c} - скорость света , v {\displaystyle v} - скорость источника относительно приёмника (наблюдателя), θ {\displaystyle \theta } - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то θ = 0 {\displaystyle \theta =0} , если приближается, то θ = π {\displaystyle \theta =\pi } .

    Релятивистский эффект Доплера обусловлен двумя причинами:

    • классический аналог изменения частоты при относительном движении источника и приёмника;

    Последний фактор приводит к поперечному эффекту Доплера , когда угол между волновым вектором и скоростью источника равен θ = π 2 {\displaystyle \theta ={\frac {\pi }{2}}} . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

    Наблюдение эффекта Доплера

    Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

    Применение

    Эффект Доплера является неотъемлемой частью современных теорий о начале Вселенной (Большом взрыве и красном смещении). Принцип получил многочисленные применения в астрономии для измерений скоростей движения звёзд вдоль луча зрения (приближения или удаления от наблюдателя) и их вращения вокруг оси, параметров вращения планет,

    Эффект Доплера – это изменение частоты и длины волн (оно регистрируется приёмником), порождённое перемещениями, как источника волн, так и приёмника.Причём, движения среды, в коей происходит перемещение волн, не связано с этим перемещением, а волновая скорость зависит от характеристик этой среды. Сам волновой источник уже не может влиять на дальнейшее поведение волн.

    Удаляющийся источник будет иметь спектральное смещение в красную сторону, а длина волн его будет увеличиваться.

    Основными волновыми характеристиками являются частота и длина волны. Частотой считается количество пиков волн, произошедшее в точке наблюдения за секунду. Длина волны – это расстояние между её «гребнями» или «впадинами». Эти две характеристики связывает скорость, с которой происходит распространение волн в какой-либо среде. Принцип явления прост: если источник волны и наблюдатель двигаются относительно друг друга, то изменится частота сигнала, воспринимаемая наблюдателем. Она либо увеличивается (приближение источника), либо снижается (удаление источника). Это частотное смещение находится в прямой пропорции к скорости источника, перемещающегося по отношению к наблюдателю.

    В 1842 году австриец Кристиан Доплер сумел установить и обосновать зависимость частоты колебаний, которую оценивает наблюдатель, от скорости и направления движения источника волн. На этом явлении базируются основные принципы измерений многих параметров космических объектов.

    Универсальность закона

    Из практических изысканий ясно, что эффект Доплера верен для любого типа волн, в частности, и звуковых. Это легко подтверждается примером движущегося автомобиля с работающей сиреной. Приближаясь, звук сирены усиливается (уменьшение длины волны), а при удалении её, сила звука сирены будет снижаться (увеличение длины волны). Это же правило работает и для света, и электромагнитного излучения в целом. При сближении с наблюдателем светового источника, длина наблюдаемой волны будет становиться короче, и свет будет иметь оттенки спектра в фиолетовых тонах.

    Эффект Доплера в астрономии

    Открытие Доплера используется при анализе космических объектов. При наблюдении спектра через призму спектрометра, можно увидеть характерные линии химических элементов, находящихся в составе объекта исследования. Именно на это обратил внимание Хаббл. Заметив в спектре атомного излучения изучаемых им галактик , он сделал вывод, что эти галактики отдаляются.

    Смещение в красную сторону спектра тем больше, чем дальше от нас расположены объекты.

    Таким образом, становится ясно, что эффект Доплера – яркий индикатор расширяющейся Вселенной. Если бы Доплеру был известен , то он и сам бы смог вычислить расстояния до галактик.

    Метод Доплера в обнаружении экзопланет

    Иначе этот метод называют спектрометрическим измерением лучевой скорости звёзд. Он получил наибольшее распространение для поиска , и эффективность его применения исключительно высока.

    Метод Доплера позволяет обнаруживать планеты, имеющие массы в несколько масс Земли, которые располагаются близко к своей звезде.

    А также, можно «увидеть» планеты-гиганты, имеющие периоды обращения до 10 лет. Двигаясь вокруг своего светила, планета раскачивает его, что вызывает доплеровское смещение в спектре звезды. С помощью этого метода определяется амплитуда колебаний радиальной скорости между звездой и одиночной планетой. При помощи метода Доплера к концу 2012 года удалось открыть 488 планет в 379 системах планет.

    Использование в других областях

    Открытие нашло применение в различных областях:

    • Доплеровский радар. Этот прибор улавливает частотные изменения сигнала, отражаемого от предмета. Изменение этого параметра позволяет измерить скорость объекта. Такие радары позволяют определять скорости автомобилей и летательных аппаратов, судов, течений водных потоков.
    • Измерения скоростей потоков. На эффекте Доплера основан метод измерения скорости потоков жидкостей и газов. Это возможно без прямого помещения датчика в сам поток. Определение скорости происходит путём волнового рассеяния.
    • Применение в медицинских исследованиях. Эффект Доплера в медицине распространён достаточно широко. Особенно удачно проводятся акушерские обследования, помогающие отслеживать ход беременности. Для диагностики характеристик кровотока также используют принцип этого эффекта.
    • Методика, использующая ультразвуковые исследования, основанные на эффекте Доплера, называется доплерографией . Его сутью является то, что движущиеся объекты отражают ультразвуковые волны с изменённой частотой.

    Принцип Доплера незаменим, если необходимо определять скорости предметов, например:

    • Детекторы движения в различных системах охран;
    • Навигация на подводных судах;
    • Измерения силы ветровых потоков;
    • Определение скоростей передвижения облаков.

    Поразительным фактом является то, что эффект Доплера стабильно работает при гигантских колебаниях частот, но мизерных (мм/сек) скоростях источника.

    Замечали ли вы когда-нибудь, что звук сирены машины имеет различную высоту при её приближении или отдалении относительно вас?

    Разность частоты гудка или сирены отдаляющегося и приближающегося поезда или машины являются, пожалуй, самым наглядным и распространённым примером эффекта Доплера. Теоретически открытый австрийским физиком Кристианом Доплером, этот эффект впоследствии сыграет ключевую роль в науке и технике.

    Для наблюдателя длина волны излучения будет иметь различное значение при различных скоростях источника относительно наблюдателя. При приближении источника длина волны будет уменьшаться, при отдалении - увеличиваться. Следовательно, с длинной волны меняется и частота. Поэтому частота гудка приближающегося поезда заметно выше частоты гудка при его отдалении. Собственно, в этом и заключается суть эффекта Доплера.

    Эффект Доплера лежит в основе работы многих измерительных и исследовательских приборов. Сегодня его повсеместно применяют в медицине, авиации, космонавтики и даже быту. С помощью эффекта Доплера работает спутниковая навигация и дорожные радары, аппараты УЗИ и охранная сигнализация. Эффект Доплера получил широко применим в научных исследованиях. Пожалуй, наиболее он известен именно в астрономии.

    Объяснение эффекта

    Чтобы понять природу эффекта Доплера достаточно взглянуть на водную гладь. Круги на воде прекрасно демонстрируют все три составляющие любой волны. Представим, что какой-нибудь неподвижный поплавок создаёт круги. В таком случае период будет соответствовать времени, прошедшему между испусканием одного и последующего круга. Частота равняется количеству кругов, испущенных поплавком за определённый промежуток времени. Длина волны будет равна разности радиусов двух последовательно испущенных кругов (расстоянию между двумя соседними гребнями).

    Представим, что к этому неподвижному поплавку приближается лодка. Так как она движется навстречу к гребням, к скорости распространения кругов прибавится скорость лодки. Поэтому относительно лодки скорость встречных гребней увеличится. Длина волны в тоже время уменьшится. Следовательно, время, которое пройдёт между ударами двух соседних кругов о борт лодки, уменьшиться. Другими словами, уменьшится период и, соответственно, увеличится частота. Точно также для удаляющейся лодки скорость гребней, которые теперь будут догонять её, уменьшиться, а длина волны увеличится. Что означает увеличение периода и уменьшения частоты.

    Теперь представим, что поплавок расположен между двумя неподвижными лодками. Причём, рыбак на одной из них тянет поплавок к себе. Приобретая скорость относительно глади, поплавок продолжает испускать точно такие же круги. Однако центр каждого последующего круга будет смещён относительно центра предыдущего в сторону лодки, к которой приближается поплавок. Поэтому со стороны этой лодки расстояние между гребнями будет уменьшено. Получается, до лодки с рыбаком, что тянет поплавок, придут круги с уменьшенной длинной волны, а значит и с уменьшенным периодом и увеличенной частотой. Аналогичным образом до другого рыбака дойдут волны с увеличенной длиной, периодом и уменьшенной частотой.

    Разноцветные звёзды

    Такие закономерности изменения характеристик волн на водной глади в своё время заметил Кристиан Доплер. Он описал каждый такой случай математически и применил полученные данные к звуку и свету, которые также имеют волновую природу. Доплер предположил, что таким образом цвет звёзд напрямую зависит от того, с какой скоростью они приближаются или удаляются от нас. Эту гипотезу он изложил в статье, которую презентовал в 1842 году.

    Заметим, что насчёт цвета звёзд Доплер заблуждался. Он полагал, что все звёзды излучают белый цвет, который впоследствии искажается из-за их скорости относительно наблюдателя. На самом деле эффект Доплера влияет не на цвет звёзд, а на картину их спектра. У отдаляющихся от нас звёзд все тёмные линии спектра будут увеличивать длину волны - смещаться в красную сторону. Этот эффект закрепился в науке под названием «красное смещение». У приближающихся звёзд напротив, линии стремятся к части спектра с более высокой частотой - фиолетовому цвету.

    Такую особенность линий спектра, основываясь на формулах Доплера, теоретически предсказал в 1848 французский физик АрманФизо. Экспериментально это было подтверждено в 1868 году Уильямом Хаггинсом, который внёс большой вклад в спектральное исследование космоса. Уже в 20 веке эффект Доплера для линий в спектре получит название «красное смещение», к которому мы ещё вернёмся.

    Концерт на рельсах

    В 1845 году голландский метеоролог Бёйс-Баллот, а затем и сам Доплер, провели серию экспериментов для проверки «звукового» эффекта Доплера. В обоих случаях они использовали, оговорённый ранее, эффект гудка приближающегося и отдаляющегося поезда. Роль гудка им выполняли группы трубачей, которые играли определённую ноту, находясь в открытом вагоне движущегося состава.

    Бёйс-Баллот пускал трубачей мимо людей с хорошим слухом, которые фиксировали изменение ноты при различной скорости состава. Затем он повторил этот эксперимент, поместив трубачей на платформу, а слушателей - в вагон. Доплер же фиксировал диссонанс нот двух групп трубачей, которые приближались и отдалялись от него одновременно, играя одну ноту.

    В обоих случаях эффект Доплера для звуковых волн успешно подтвердился. Более того, каждый из нас может провести этот эксперимент в повседневной жизни и подтвердить его для себя. Поэтому не смотря на то, что эффект открытие Доплера подвергалось критике со стороны современников, дальнейшие исследования сделали его неоспоримым.

    Как отмечалось ранее, эффект Доплера применяется для определения скорости космических объектов относительно наблюдателя.

    Тёмные линии на спектре космических объектов изначально всегда расположены в строго фиксированном месте. Это место соответствует длине волны поглощениям того или иного элемента. У приближающегося или удаляющегося объекта все полосы меняют своё положения в фиолетовую или красную область спектра соответственно. Сравнивая спектральные линии земных химических элементов с аналогичными линиями на спектрах звёзд, можно оценить с какой скоростью приближается или удаляется от нас объект.

    Красное смещение на спектрах галактик было обнаружено американским астрономом Весто Слайфером в 1914 году. Его соотечественник Эдвин Хаббл сопоставлял, открытые им же, расстояния до галактик с величиной их красного смещения. Так в 1929 году он пришёл к выводу, что чем дальше галактика, тем быстрее она удаляется от нас. Как окажется в последствие, открытый им закон был довольно неточен и не совсем верно описывал реальную картину. Однако Хаббл задал верную тенденцию для дальнейших исследований других учёных, которые впоследствии введут понятия космологического красного смещения.

    В отличие от доплеровского красного смещения, возникающего из-за собственного движения галактик относительно нас, космологическое возникает из-за расширения пространства. Как известно, Вселенная равномерно расширяется по всему своему объёму. Поэтому чем дальше друг от друга две галактики, тем с большими скоростями они разбегаются друг от друга. Так каждый мегапарсек между галактиками каждую секунду удалят их друг от друга примерно на 70 километров. Это величина называется постоянной Хаббла. Что интересно, изначально сам Хаббл оценил свою постоянную в целых 500 км/с на мегапарсек.

    Это объясняется тем, что он никак не учитывал то, что красное смещение любой галактики складывается из двух разных красных смещений. Помимо того, что галактиками движет расширение Вселенной, они также совершают собственные движения. Если релятивистское красное смещение имеет одинаковое распределение для всех расстояний, то доплеровское принимает самые непредсказуемые расхождения. Ведь собственное движение галактик внутри их скоплений зависит лишь от взаимных гравитационных воздействий.

    Близкие и далёкие галактики

    Между близкими галактиками постоянная Хаббла практически не применима для оценки расстояний между ними. К примеру, галактика Андромеда относительно нас имеет суммарное фиолетовое смещение, так как приближается к Млечному Пути со скоростью около 150 км/с. Если мы применим к ней закон Хаббла, то она должна удаляться от нашей галактики со скоростью 50 км/с, что совсем не соответствует реальности.

    Для далёких же галактик доплеровское красное смещение практически неощутимо. Их скорость удаления от нас лежит в прямой зависимости от расстояния и с небольшой погрешностью соответствует постоянной Хаббла. Так самые далёкие квазары удаляются от нас скоростью большей, чем скорость света. Как это ни странно, это не противоречит теории относительности, ведь это скорость расширяющегося пространства, а не самих объектов. Поэтому важно уметь различать доплеровское красное смещение от космологического.

    Также стоит отметить, в случае электромагнитных волн имеют место быть и релятивистские эффекты. Сопутствующие искажение времени и изменение линейных размеров при движении тела относительно наблюдателя также влияют на характер волны. Как и в любом случае с релятивистскими эффектам

    Несомненно, без эффекта Доплера, с помощью которого произошло открытие красного смещения, мы бы не знали о крупномасштабной структуре Вселенной. Однако не только этим астрономы обязаны этому свойству волн.

    Эффект Доплера позволяет обнаружить незначительные отклонения в положении звёзд, которые могут создавать планеты, обращающиеся вокруг них. Благодаря этому было открыто сотни экзопланет. Также он используется для подтверждения наличия экзопланет, предварительно обнаруженных с помощью других методов.

    Эффект Доплера сыграл решающую роль в исследовании тесных звёздных систем. Когда две звезды настолько близки, что их невозможно увидеть по-отдельности, на помощь астрономам приходит эффект Доплера. Он позволяет проследить невидимое взаимное движение звёзд по их спектру. Такие звёздные системы даже получили название «оптически двойные».

    С помощью эффекта Доплера можно оценить не только скорость космического объекта, но и скорость его вращения, расширения, скорость его атмосферных потоков и многого другого. Скорость колец Сатурна, расширения туманностей, пульсации звёзд - всё это измерена благодаря этому эффекту. С помощью него даже определяют температуру звёзд, ведь температура также являет собой показатель движения. Можно сказать, что практически всё, что связано со скоростями космических объектов, современные астрономы измеряют, использую именно эффекту Доплера.

    λ, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Доплера эффекта проще всего объяснить на следующем примере. Пусть неподвижный источник в однородной среде без дисперсии испускает волны с периодом Т 0 = λ 0 /υ, где λ 0 - длина волны, υ - фазовая скорость волны в данной среде. Неподвижный наблюдатель будет принимать излучение с таким же периодом Т 0 и той же длиной волны λ 0 . Если же источник S движется с некоторой скоростью V s в сторону наблюдателя Р (приёмника), то длина принимаемой наблюдателем волны уменьшится на величину смещения источника за период Т 0 , то есть λ = λ 0 -V S T 0 , а частота ω соответственно увеличится: ω = ω 0 /(1 - V s /υ). Принимаемая частота увеличивается, если источник неподвижен, а наблюдатель приближается к нему. При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же формулой, но с изменённым знаком скорости.

    В общем случае, когда и источник, и приёмник движутся относительно неподвижной среды с нерелятивистскими скоростями V S и V P под произвольными углами θ S и θ Р (рис.), принимаемая частота равна (1):

    Максимальное увеличение частоты происходит при движении источника и приёмника навстречу друг другу (θ S = 0, θ Р = π), а уменьшение - при взаимном удалении источника и наблюдателя (θ S = π, θ Р = 0). Если же источник и приёмник движутся с одинаковыми по величине и направлению скоростями, Доплера эффекта отсутствует.

    При скоростях движения, сравнимых со скоростью света с в вакууме, необходимо принять во внимание релятивистский эффект замедления времени (смотри Относительности теория); в результате для неподвижного наблюдателя (V P = 0) принимаемая частота излучения (2)

    где β = V S /с. В этом случае смещение частоты имеет место и при θ S = π/2 (так называемый поперечный Доплера эффект). Для электромагнитных волн в вакууме в любой системе отсчёта υ = с и в формуле (2) под V S нужно понимать относительную скорость источника.

    В средах с дисперсией, когда фазовая скорость υ зависит от частоты ω, соотношения (1), (2) могут допускать несколько значений ω для заданных ω 0 и V S то есть в точку наблюдения под одним и тем же углом могут приходить волны с разными частотами (так называемый сложный Доплера эффект). Дополнительные особенности возникают при движении источника со скоростью V S > υ, когда на поверхности конуса углов, удовлетворяющих условию cosθ S = υ/V S , знаменатель в формуле (2) обращается в нуль, - имеет место так называемый аномальный Доплера эффект. В этом случае внутри указанного конуса частота растёт с увеличением угла θ S , тогда как при нормальном Доплера эффекте под большими углами θ S излучаются меньшие частоты.

    Разновидностью Доплера эффекта является так называемый двойной Доплера эффект - смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если ω 0 и υ 0 - частота и фазовая скорость волны, падающей на плоскую границу, то частоты ω i вторичных (отражённых и прошедших) волн, распространяющихся со скоростями υ i , определяются как (3)

    где θ 0 , θ i - углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности. Формула (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (например, волны ионизации в газе). Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем меньше разница скоростей границы и отражённой волны.

    Для нестационарных сред изменение частоты распространяющихся волн может происходить даже для неподвижных излучателя и приемника - так называемый параметрический эффект Доплера.

    Доплера эффект назван в честь К. Доплера, который впервые теоретически обосновал его в акустике и оптике (1842). Первое экспериментальное подтверждение Доплера эффекта в акустике относится к 1845. А. Физо (1848) ввёл понятие доплеровского смещения спектральных линий, которое было обнаружено позднее (1867) в спектрах некоторых звёзд и туманностей. Поперечный Доплера эффект был обнаружен американскими физиками Г. Айвсом и Д. Стилуэллом в 1938. Обобщение Доплера эффекта на случай нестационарных сред принадлежит В. А. Михельсону (1899); на возможность сложного Доплера эффекта в средах с дисперсией и аномального Доплера эффекта при V > υ впервые указали В. Л. Гинзбург и И. М. Франк (1942).

    Доплера эффект позволяет измерять скорости движения источников излучения и рассеивающих волны объектов и находит широкое практическое применение. В астрофизике Доплера эффект используется для определения скорости движения звёзд, а также скорости вращения небесных тел. Измерения доплеровского красного смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной. Доплеровское уширение спектральных линий излучения атомов и ионов даёт способ измерения их температуры. В радио- и гидролокации Доплера эффект используется для измерения скорости движущихся целей, для определения их на фоне неподвижных отражателей и т. п.

    Лит.: Франкфурт У. И., Френк А. М. Оптика движущихся тел. М., 1972; Угаров В. А. Специальная теория относительности. 2-е изд. М., 1977; Франк И. М. Эйнштейн и оптика // Успехи физических наук. 1979. Т. 129. Вып. 4; Гинзбург В. Л. Теоретическая физика и астрофизика: Дополнительные главы. 2-е изд. М., 1981; Ландсберг Г. С. Оптика. 6-е изд. М., 2003.

Loading...Loading...