Простые и составные числа, свойства простых чисел. Разбор примера


В этой статье мы изучим простые и составные числа . Сначала дадим определения простых и составных чисел, а также приведем примеры. После этого докажем, что простых чисел бесконечно много. Далее запишем таблицу простых чисел, и рассмотрим методы составления таблицы простых чисел, особо тщательно остановимся на способе, получившем название решето Эратосфена. В заключение осветим основные моменты, которые нужно учитывать при доказательстве того, что данное число является простым или составным.

Навигация по странице.

Простые и составные числа – определения и примеры

Понятия простые числа и составные числа относятся к , которые больше единицы. Такие целые числа, в зависимости от количества их положительных делителей, подразделяются на простые и составные числа. Таким образом, чтобы понять определения простых и составных чисел , нужно хорошо представлять себе, что такое делители и кратные .

Определение.

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и 1 .

Определение.

Составные числа – это целые числа, большие единицы, которое имеют, по крайней мере, три положительных делителя.

Отдельно заметим, что число 1 не относится ни к простым, ни к составным числам. Единица имеет только один положительный делитель, которым является само число 1 . Этим число 1 отличается от всех остальных целых положительных чисел, которые имеют не менее двух положительных делителей.

Учитывая, что целые положительные числа – это , и что единица имеет только один положительный делитель, можно привести другие формулировки озвученных определений простых и составных чисел.

Определение.

Простыми числами называют натуральные числа, которые имеют только два положительных делителя.

Определение.

Составными числами называют натуральные числа, имеющие более двух положительных делителей.

Отметим, что каждое целое положительное число, большее единицы, есть либо простое, либо составное число. Иными словами, не существует ни одного такого целого числа, которое не являлось бы ни простым, ни составным. Это следует из свойства делимости , которое гласит, что числа 1 и a всегда являются делителями любого целого числа a .

Исходя из информации предыдущего абзаца, можно дать следующее определение составных чисел.

Определение.

Натуральные числа, которые не являются простыми, называются составными .

Приведем примеры простых и составных чисел .

В качестве примеров составных чисел приведем 6 , 63 , 121 и 6 697 . Это утверждение тоже нуждается в пояснении. Число 6 имеет кроме положительных делителей 1 и 6 еще и делители 2 и 3 , так как 6=2·3 , поэтому 6 – действительно составное число. Положительными делителями 63 являются числа 1 , 3 , 7 , 9 , 21 и 63 . Число 121 равно произведению 11·11 , поэтому его положительными делителями являются 1 , 11 и 121 . А число 6 697 составное, так как его положительными делителями кроме 1 и 6 697 являются еще и числа 37 и 181 .

В заключение этого пункта хочется еще обратить внимание на то, что простые числа и взаимно простые числа – это далеко ни одно и то же.

Таблица простых чисел

Простые числа, для удобства их дальнейшего использования, записывают в таблицу, которую называют таблицей простых чисел. Ниже представлена таблица простых чисел до 1 000 .

Возникает логичный вопрос: «Почему мы заполнили таблицу простых чисел только до 1 000 , разве нельзя составить таблицу всех существующих простых чисел»?

Ответим сначала на первую часть этого вопроса. Для большинства задач, при решении которых придется использовать простые числа, нам будет вполне достаточно простых чисел в пределах тысячи. В остальных случаях, скорее всего, придется прибегать к каким-либо специальным приемам решения. Хотя, несомненно, мы можем составить таблицу простых чисел до сколь угодно большого конечного целого положительного числа, будь то 10 000 или 1 000 000 000 , в следующем пункте мы поговорим о методах составления таблиц простых чисел, в частности, разберем способ, получивший название .

Теперь разберемся с возможностью (а точнее с невозможностью) составления таблицы всех существующих простых чисел. Мы не можем составить таблицу всех простых чисел, потому что простых чисел бесконечно много. Последнее утверждение представляет собой теорему, которую мы докажем после следующей вспомогательной теоремы.

Теорема.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство.

Пусть a – натуральное число, большее единицы, и b – наименьший положительный и отличный от единицы делитель числа a . Докажем, что b – простое число методом от противного.

Предположим, что b – составное число. Тогда существует делитель числа b (обозначим его b 1 ), который отличен как от 1 , так и от b . Если также учесть, что абсолютная величина делителя не превосходит абсолютной величины делимого (это мы знаем из свойств делимости), то должно выполняться условие 1

Так как число a делится на b по условию, и мы сказали, что b делится на b 1 , то понятие делимости позволяет говорить о существовании таких целых чисел q и q 1 , что a=b·q и b=b 1 ·q 1 , откуда a= b 1 ·(q 1 ·q) . Из следует, что произведение двух целых чисел есть целое число, тогда равенство a=b 1 ·(q 1 ·q) указывает на то, что b 1 является делителем числа a . Учитывая полученные выше неравенства 1

Теперь мы можем доказать, что простых чисел бесконечно много.

Теорема.

Простых чисел бесконечно много.

Доказательство.

Предположим, что это не так. То есть, предположим, что простых чисел всего n штук, и эти простые числа есть p 1 , p 2 , …, p n . Покажем, что мы всегда можем найти простое число, отличное от указанных.

Рассмотрим число, p равное p 1 ·p 2 ·…·p n +1 . Понятно, что это число отлично от каждого из простых чисел p 1 , p 2 , …, p n . Если число p - простое, то теорема доказана. Если же это число составное, то в силу предыдущей теоремы существует простой делитель этого числа (обозначим его p n+1 ). Покажем, что этот делитель не совпадает ни с одним из чисел p 1 , p 2 , …, p n .

Если бы это было не так, то по свойствам делимости произведение p 1 ·p 2 ·…·p n делилось бы на p n+1 . Но на p n+1 делится и число p , равное сумме p 1 ·p 2 ·…·p n +1 . Отсюда следует, что на p n+1 должно делиться второе слагаемое этой суммы, которое равно единице, а это невозможно.

Так доказано, что всегда может быть найдено новое простое число, не заключающееся среди любого количества наперед заданных простых чисел. Следовательно, простых чисел бесконечно много.

Итак, в силу того, что простых чисел бесконечно много, при составлении таблиц простых чисел всегда ограничивают себя сверху каким-либо числом, обычно, 100 , 1 000 , 10 000 и т.д.

Решето Эратосфена

Сейчас мы обсудим способы составления таблиц простых чисел. Предположим, что нам нужно составить таблицу простых чисел до 100 .

Самым очевидным методом решения этой задачи является последовательная проверка целых положительных чисел, начиная с 2 , и заканчивая 100 , на наличие положительного делителя, который больше 1 и меньше проверяемого числа (из свойств делимости мы знаем, что абсолютная величина делителя не превосходит абсолютной величины делимого, отличного от нуля). Если такой делитель не найден, то проверяемое число является простым, и оно заносится в таблицу простых чисел. Если же такой делитель найден, то проверяемое число является составным, оно НЕ заносится в таблицу простых чисел. После этого происходит переход к следующему числу, которое аналогично проверяется на наличие делителя.

Опишем несколько первых шагов.

Начинаем с числа 2 . Число 2 не имеет положительных делителей, кроме 1 и 2 . Следовательно, оно простое, поэтому, заносим его в таблицу простых чисел. Здесь следует сказать, что 2 является наименьшим простым числом. Переходим к числу 3 . Его возможным положительным делителем, отличным от 1 и 3 , является число 2 . Но 3 на 2 не делится, поэтому, 3 – простое число, и его также нужно занести в таблицу простых чисел. Переходим к числу 4 . Его положительными делителями, отличными от 1 и 4 , могут быть числа 2 и 3 , проверим их. Число 4 делится на 2 , поэтому, 4 – составное число, и его не нужно заносить в таблицу простых чисел. Обратим внимание на то, что 4 – наименьшее составное число. Переходим к числу 5 . Проверяем, являются ли его делителем хотя бы одно из чисел 2 , 3 , 4 . Так как 5 не делится ни на 2 , ни на 3 , ни на 4 , то оно простое, и его надо записать в таблицу простых чисел. Дальше происходит переход к числам 6 , 7 , и так далее до 100 .

Такой подход к составлению таблицы простых чисел является далеко не идеальным. Так или иначе, он имеет право на существование. Отметим, что при этом способе построения таблицы целых чисел можно использовать признаки делимости , которые немного ускорят процесс поиска делителей.

Существует более удобный способ для составления таблицы простых чисел, называемый . Присутствующее в названии слово «решето» не случайно, так как действия этого метода помогают как бы «просеять» сквозь решето Эратосфена целые числа, большие единицы, чтобы отделить простые от составных.

Покажем решето Эратосфена в действии при составлении таблицы простых чисел до 50 .

Сначала записываем по порядку числа 2, 3, 4, …, 50 .


Первое записанное число 2 является простым. Теперь от числа 2 последовательно перемещаемся вправо на два числа и зачеркиваем эти числа, пока не доберемся до конца составляемой таблицы чисел. Так будут вычеркнуты все числа, кратные двум.

Первым следующим за 2 невычеркнутым числом является 3 . Это число простое. Теперь от числа 3 последовательно перемещаемся вправо на три числа (учитывая и уже зачеркнутые числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные трем.

Первым следующим за 3 невычеркнутым числом является 5 . Это число простое. Теперь от числа 5 последовательно перемещаемся вправо на 5 чисел (учитываем и зачеркнутые ранее числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные пяти.

Дальше вычеркиваем числа, кратные 7 , затем, кратные 11 и так далее. Процесс заканчивается, когда не останется чисел для вычеркивания. Ниже показана законченная таблица простых чисел до 50 , полученная с помощью решета Эратосфена. Все незачеркнутые числа являются простыми, а все зачеркнутые числа – составными.

Давайте еще сформулируем и докажем теорему, которая позволит ускорить процесс составления таблицы простых чисел при помощи решета Эратосфена.

Теорема.

Наименьший положительный и отличный от единицы делитель составного числа a не превосходит , где - из a .

Доказательство.

Обозначим буквой b наименьший и отличный от единицы делитель составного числа a (число b является простым, что следует из теоремы, доказанной в самом начале предыдущего пункта). Тогда существует такое целое число q , что a=b·q (здесь q – положительное целое число, что следует из правил умножения целых чисел), причем (при b>q нарушится условие, что b – наименьший делитель числа a , так как q также является делителем числа a в силу равенства a=q·b ). Умножив обе части неравенства на положительное и большее единицы целое число b (это нам позволяют сделать ), получаем , откуда и .

Что же нам дает доказанная теорема, касательно решета Эратосфена?

Во-первых, вычеркивание составных чисел, кратных простому числу b следует начинать с числа, равного (это следует из неравенства ). Например, вычеркивание чисел, кратных двум, следует начинать с числа 4 , кратных трем – с числа 9 , кратных пяти – с числа 25 , и так далее.

Во-вторых, составление таблицы простых чисел до числа n с помощью решета Эратосфена можно считать законченным тогда, когда будут вычеркнуты все составные числа, кратные простым числам, не превосходящим . В нашем примере n=50 (так как мы составляем таблицу простых чисел до 50 ) и , поэтому решето Эратосфена должно отсеять все составные числа, кратные простым числам 2 , 3 , 5 и 7 , которые не превосходят арифметического квадратного корня из 50 . То есть, нам дальше не нужно заниматься поиском и вычеркиванием чисел, кратных простым числам 11 , 13 , 17 , 19 , 23 и так далее до 47 , так как они уже будут вычеркнуты, как кратные меньшим простым числам 2 , 3 , 5 и 7 .

Данное число простое или составное?

Некоторые задания требуют выяснения, является ли данное число простым или составным. В общем случае эта задача далеко не проста, особенно для чисел, запись которых состоит из значительного количества знаков. В большинстве случаев приходится искать какой-либо специфический способ ее решения. Однако мы попробуем дать направление ходу мыслей для несложных случаев.

Несомненно, можно попробовать воспользоваться признаками делимости для доказательства того, что данное число является составным. Если, к примеру, некоторый признак делимости показывает, что данное число делится на некоторое целое положительное число большее единицы, то исходное число является составным.

Пример.

Докажите, что число 898 989 898 989 898 989 составное.

Решение.

Сумма цифр данного числа равна 9·8+9·9=9·17 . Так как число, равное 9·17 делится на 9 , то по признаку делимости на 9 можно утверждать, что исходное число также делится на 9 . Следовательно, оно составное.

Существенный недостаток такого подхода заключается в том, что признаки делимости не позволяют доказать простоту числа. Поэтому при проверке числа на то, является ли оно простым или составным, нужно действовать иначе.

Самый логичный подход состоит в переборе всех возможных делителей данного числа. Если ни один из возможных делителей не будет истинным делителем данного числа, то это число будет простым, в противном случае – составным. Из теорем, доказанных в предыдущем пункте, следует, что делители данного числа a нужно искать среди простых чисел, не превосходящих . Таким образом, данное число a можно последовательно делить на простые числа (которые удобно брать из таблицы простых чисел), пытаясь найти делитель числа a . Если будет найден делитель, то число a – составное. Если же среди простых чисел, не превосходящих , не окажется делителя числа a , то число a – простое.

Пример.

Число 11 723 простое или составное?

Решение.

Выясним, до какого простого числа могут быть делители числа 11 723 . Для этого оценим .

Достаточно очевидно, что , так как 200 2 =40 000 , а 11 723<40 000 (при необходимости смотрите статью сравнение чисел ). Таким образом, возможные простые делители числа 11 723 меньше числа 200 . Это уже значительно облегчает нашу задачу. Если бы мы этого не знали, то нам бы пришлось перебирать все простые числа не до 200 , а вплоть до числа 11 723 .

При желании можно оценить более точно. Так как 108 2 =11 664 , а 109 2 =11 881 , то 108 2 <11 723<109 2 , следовательно, . Таким образом, любое из простых чисел, меньших 109 , потенциально является простым делителем данного числа 11 723 .

Теперь мы будем последовательно делить число 11 723 на простые числа 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 . Если число 11 723 разделится нацело на одно из записанных простых чисел, то оно будет составным. Если же оно не делится ни на одно из записанных простых чисел, то исходное число простое.

Не будем описывать весь этот монотонный и однообразный процесс деления. Сразу скажем, что 11 723

а имеет по крайней мере два делителя — единицу и само число а . Действительно, а:1 = а, а:а = 1.

Число 5 имеет только два делителя — числа 1 и 5. Только два делителя имеют также, в частности, числа 2, 7, 11, 13. Такие числа именуются простыми.

Натуральное число называют простым , если оно имеет только два натуральных делителя : единицу и само это число.

Для комфорта была сформирована таблица простых чисел . Число два - минимальное простое число. Заметим, что это единственное чётное простое число. Фактически, все другие чётные числа имеют минимально три делителя: число 1, число 2 и само число.

Простых чисел бесчисленное множество . Максимального простого числа не бывает.

У чисел 6, 15, 49, 1000 есть больше двух делителей.

Например: 10=2 .5;

80 = 2 . 2 . 2 . 2 . 5;

81= 3 . 3 . 3 . 3;

200 = 2 .2 .2 .5 .5.

Заметим, что любые два разложения числа на простые множители состоят из одних и тех же множителей и могут отличаться только их последовательностью. Как правило, произведение одинаковых множителей в разложении числа на простые множители заменяют степенью .

Например :

18 = 2 . 3 2 ; 80 = 2 4 . 5; 81 = 3 4 ; 200 = 2 3 - 5 2 .

При разложении числа на простые множители целесообразно использовать схему, которую продемонстрируем на примере разложения числа 2940:

1) 2940 поделится на 2, 2940: 2 = 1470 ;

2) 1470 поделится на 2, 1470: 2 = 735 ;

3) 735 не поделится на 2, но поделится на 3, 735: 3 = 245 ;

4) 245 не поделится на 3, но поделится на 5, 245: 5 = 49 ;

5) 49 не поделится на 5, но поделится на 7, 49: 7 = 7 ;

6) 7 поделится на 7, 7: 7 = 1 .

Таким образом , 2940 = 2 . 1470 = 2 . 2 . 735 = 2 . 2 . 3 . 245 = = 2 . 2 . 3 . 5 . 49 = 2 . 2 . 3 . 5 . 7 . 7 = 2 2 . 3 . 5 . 7 2 .

Если простые числа записать в порядке их возрастания, то образуется последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17…….

Последовательность простых чисел имеет много интересных свойств и тайн. Например, ученые Древней Эллады отметили, что среди простых чисел много таких разность которых равна двум, например: 3 и 5; 5 и 7; 11 и 13; 17 и 19 и т.д. Подобные пары чисел именуют простыми числами близнецами. Уже более 25 веков ученные стараются найти существуют ли максимальное число близнец, но до сих пор ответ на этот вопрос не найден.

>>Математика:Простые и составные числа

4. Простые и составные числа

Число 7 делится только на 1 и само на себя. Другими словами, число 7 имеет только два делителя: 1 и 7. У числа 9 три делителя: 1, 3 и 9. Число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18.

Такие числа, как 9 и 18, называют составными числами, а такие, как 7, - простыми числами.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число. Натуральное число называют составным, если оно имеет более двух делителей.

Число 1 имеет только один делитель: само это число. Поэтому его не относят ни к составным, ни к простым числам.

Первыми десятью простыми числами являются 2, 3, 5, 7, 11, 13, 17,19, 23, 29. На форзаце учебника приведена таблица простых чисел от 2 до 997.

Число 78 составное, потому что, кроме 1 и 78, оно делится, например, еще на 2. Так как 78:2 = 39, то 78=2*39. Говорят, что число 78 разложено на множители 2 и 39. Любое составное число можно разложить на два множителя, каждый из которых больше 1. Простое число так разложить на множители нельзя.

? Какие натуральные числа называют простыми? Какие натуральные числа называют составными? Почему число 1 не является ни простым, ни составным?

К 88. Сколько делителей имеет каждое из чисел: 31,26,100?

89. С помощью таблицы простых чисел, помещенной на форзаце учебника , определите, какие из чисел 101, 121, 253, 409, 561, 563, 863, 997 являются простыми, а какие составными.

90. Докажите, что числа 2968, 3600, 888 888, 676 767 являются составными.

91. Может ли произведение двух простых чисел быть:

а) простым числом;

б) составным числом?

92. Может ли площадь квадрата выражаться простым числом, если длина его стороны выражается натуральным числом?

93. Известно, что число m делится на 9. Простым или составным является число m?

94. Разложите на два множителя числа: 38; 77; 145; 159.

95. Сколькими способами можно разложить на два множителя числа 18; 42; 55? Способы, при которых произведения отличаются только порядком

множителей, считайте за один способ.

96. Верно ли, что все четные числа являются составными?

97. Может ли выражаться простым числом объем куба, длина ребра которого выражается натуральным числом?

П 98. Вычислите устно:
а) 0,014-1,1+0,09; 8,1 + 2,99 + 1,01; 1,88+3,7+0,12; 2,8 + 1,85 + 2,15; 1,07 + 0,88+1,93;

б) 15 - 2,3; 0,3-0,29; 7-0,2; 6-2,75; 16,4-4;

в) 2,5-2,7-4; 3,9-0,5-2; 1,25-1,9-8; 4-5,6-0,25; 0,5-30-0,1;

г) 1:10; 8,08:8; 9:100; 6,73:10; 0,7:0,01.

99. Найдите пропущенные числа, если а = 33; 42; 75:

100. Выразите в процентах числа: 0,01; 0,29; 0,8; 1.

101. Выразите в виде десятичных дробей: 2%, 5%, 10%, 20%, 50%, 68%, 100%, 130%.

102. Длина и ширина прямоугольного параллелепипеда выражаются натуральным числом сантиметров, а высота равна 15 см. Можно ли утверждать, что объем (в кубических сантиметрах) этого параллелепипеда выражается числом:

а) кратным 2; б) кратным 3; в) кратным 5?

103. Какую цифру нужно приписать к числу 10 слева и справа, чтобы получилось четырехзначное число , делящееся: а) на 9; б) на 3; в) на 6?

104. Выпишите из чисел 215 783, 3 289 775, 21 112 221, 44 856, 555 444, 757 575, 835 743 те, которые:
а) кратны 3; в) делятся без остатка на 3 и на 5;
б) кратны 9; г) кратны 9 и 2.

105. Верно ли, что если число оканчивается цифрой 6, то оно делится на 6? Верно ли, что если число делится на 6, то его запись оканчивается цифрой 6?

106. Какие цифры можно поставить вместо звездочки, чтобы число делилось без остатка на 3 и на 5:

а) 241*; б) 1734*; в) 43*5?

107. Стакан вмещает 210 г крупы. Крупой наполнили стакана. Сколько граммов крупы насыпали в стакан?

М 108. Дочь пообещала: «Я схожу в булочную и вымою посуду». Можно ли обещание считать выполненным, если дочь:

а) вымыла посуду, но не сходила в булочную;

б) сходила в булочную и не вымыла посуду;

в) и вымыла посуду, и сходила в булочную;

в) не вымыла посуду и не была в булочной?

Подумайте, в чем сходство этой задачи с задачей нахождения решений неравенства 2<х<6 среди чисел 1; 3; 5; 7.

Д 109. Докажите, что числа 575, 10 053, 3627, 565 656 являются составными.

110. С помощью таблицы простых чисел, помещенной на форзаце учебника, выберете из чисел 122, 132, 153, 157, 187, 499, 550, 621, 881, 865 и 909 простые числа.

111. Запишите все делители числа 90. Выпишите из них те, которые являются простыми числами.

112. Разложите на два множителя всеми возможными способами числа 30, 33, 42, 99. Способы, при которых произведения отличаются только порядком множителей, считайте за один способ.

113. Периметр прямоугольника 66 дм. Длина его одной стороны составляет периметра. Найдите площадь прямоугольника.

114. Найдите значение выражения (15,964:5,2 -1,2) 0,1.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Рефераты, домашняя работа по математике скачать , учебники скатать бесплатно, онлайн уроки, вопросы и ответы

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Определение 1

Натуральное число $p$ называется простым числом, если у него только $2$ делителя: $1$ и оно само.

Делителем натурального числа $a$ называют натуральное число, на которое исходное число $a$ делится без остатка.

Пример 1

Найти делители числа $6$.

Решение: Нам надо найти все числа, на которые заданное число $6$ делится без остатка. Это будут числа: $1,2,3,6.$ Значит делителем числа $6$ будут числа $1,2,3,6.$

Ответ: $1,2,3,6$.

Значит, для того, чтобы найти делители числа надо найти все натуральные числа, на которые данное делится без остатка. Нетрудно заметить, что число $1$ будет являться делителем любого натурального числа.

Пример 2

На сколько равных кучек можно разделить $15$ орехов?

Решение. Нам необходимо разделить поровну нацело $15$ орехов, т.е. найти делители числа $15$.Найдем числа, на которые число $15$ делится без остатка.

Это числа:$1,3,5,15$. Значит $15$ орехов можно разделить на $1,3,5,15$ равных кучек.

Ответ: на $1,3,5,15$ кучек.

Определение 2

Составным называют число, у которого кроме единицы и самого себя есть другие делители.

Примером простого числа может являться число $13$, примером составного число $14$.

Замечание 1

Число $1$ имеет только один делитель-само это число, поэтому его не относят ни к простым, ни к составным.

Наибольший общий делитель

Определение 4

Наибольшее натуральное число, на которое делятся без остатка числа $a$ и $b$, называется наибольшим общим делителем и часто обозначается НОД.

Чтобы найти наибольший общий делитель двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выбрать числа, которые входят в разложение этих чисел
  3. Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

Пример 3

Найти НОД чисел $63$ и $81$.

Решение: Найдём НОД чисел $63$ и $81$

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Свойство составных и простых чисел

Теорема 1

Любое составное число можно разложить на $2$ множителя, каждый из которых больше единицы. Простое число так представить нельзя.

Действительно, простое число $17$ можно представить в виде произведения множителей только так: $17=1\cdot 17$, а составное число $18=1\cdot 2\cdot 9$. У составного числа $18$ три множителя, два из которых больше единицы.

Замечание 2

Всякое составное число можно разложить на простые множители и представить в виде произведения множителей, которые являются простыми числами.

Свойства простых чисел

    Если простое число $p$ делится на простое число $q$, то эти числа равны $(p=q)$. Действительно, если $p$ - простое число, то оно по определению имеет только два делителя, а именно $1$ и $p$. Но т.к. по условию $р\vdots q$, значит $q$ равно либо $1$, либо $p$. Т. к $q≠1$, значит $p=q$.

    Если $p$- простое число, то любое натуральное число либо делится на $p$, либо взаимно простое с $p$.

    В самом деле, допустим, что $p$ и $n$- не взаимно простые. И либо опровергнем, либо убедимся в этом. Если указанные числа не взаимно простые, то у них должен быть хотя бы один общий делитель, отличный от $1$, обозначим его $d$. Но по условию $p$- простое число, значит имеет по определению, всего два делителя-$1$ и $p$.Поскольку $d≠1$, то $d=p$, и поэтому $n$ делится на $p$.

    Произведение натуральных чисел $a$ и $b$ делится на простое число $p$ в том случае, когда хотя бы одно из этих чисел делится на $p$.

    Данное утверждение верно для произведения нескольких множителей- если такое произведение делится на простое число $p$, то хотя бы один из множителей делится на $p$.

    Любое натуральное число, отличное от $1$, является либо простым, либо произведением простых чисел

    Если натуральное число m делится на простое число $p$, то в любом разложении этого числа на простые множители хотябы один из множителей равен $p$.

    Действительно, пусть $m=p_{1\dots \dots .}p_k$-разложение на множители.Так как $m\vdots p$, то по утверждению,данному в п.3 хотя бы один из множителей делится на $p$.Пусть, например $р_1\vdots p$.Тогда по утверждению, данному в п.1 выполняется равенство $р_1=p$

    Любые два разложения составного числа отличаются друг от друга только порядком множителей.

Замечание 3

Из простых чисел с помощью умножения можно постоить все натуральные числа.

Свойства простых чисел

    Среди простых чисел нет наибольшего

    Если $n$-составное натуральное число, то среди его простых делителей есть хотя бы один делитель $p$, такой, что $р^2\le n$.

    Второе свойство можно успешно использовать при разложении числа на множители или при проверке его на простоту. Достаточно ограничиться проверкой делимости числа $n$ на простые делители p,для которых будет выполняться $р^2\le n$.

Пример 4

Проверить, является ли число $91$ составным.

Решение: Так как $7^2
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урок: формирование понятий простых и составных чисел.

Задачи урока:

  • познакомить учащихся с понятием простых и составных чисел;
  • расширить знания о натуральных числах;
  • развивать умение слушать;
  • воспитывать познавательную активность, интерес к предмету;

Методические приемы: беседа, рассказ, демонстрация, работа с учебником, упражнения, обучающий контроль.

Тип урока: урок изучения нового материала.

Форма работы: фронтальная, самостоятельная.

Оборудование урока:

  • техническое обеспечение: (персональный компьютер, демонстрационный экран, мультимедийный проектор);
  • программное обеспечение: (Microsoft Power Point, Word, программы сканирования и обработки изображений);
  • карточки с заданиями.

Литература:

  • учебник “Математика 6 класс”, автор Н. Виленкин;
  • энциклопедический словарь юного математика;
  • тесты по математике 6;
  • с математикой в путь, автор Н. Лэнгдон.

План урока.

  1. Организация начала урока.
  2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.
  3. Изучение нового материала.
  4. Первичное осмысление и закрепление нового материала.
  5. Подведение итогов.
  6. Информация о домашнем задании.

Ход урока

1. Организация начала урока.

Здравствуйте ребята, садитесь.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

На прошлом уроке у вас было домашнее задание повторить материал прошлых уроков, который нам сегодня пригодится для изучения новой темы.

Устный опрос.

  1. Какое число называют делителем данного натурального числа? (Делителем натурального числа а называют натуральное число, на которое а делится без остатка.)
  2. Какое число является делителем любого натурального числа? (Единица.)
  3. Из предложенного списка назвать все делители числа 16. (1; 4; 2; 16; 8) Слайд №1
  4. Из предложенного списка назвать все числа, которые делятся на 10. Почему? (100, 570 – оканчиваются цифрой 0) Слайд №2
  5. Из предложенного списка назвать все числа, которые делятся на 5. Почему? (100, 570, 5, 25, 3735 - оканчиваются цифрой 0 или 5) Слайд №3
  6. Из предложенного списка назвать все числа, которые делятся на 2. Почему? (100, 14, 128, 570, 296 - оканчиваются четными цифрами) Слайд №4
  7. Из предложенного списка назвать все числа, которые делятся на 3. Почему? (111, 3735 – сумма цифр числа делится на 3) Слайд №5
  8. Задание выполнено с ошибкой. Найди их. (327 не делится на 2, 142 не делится на 10, 9296 не делится на 5, 648 не делится на 5, 859 не делится на 10) Слайд №6

3. Изучение нового материала. Слайд №7

Назвать все делители чисел. Что можно сказать о количестве делителей этих чисел? (Есть числа, которые имеют только два делителя и числа, которые имеют более двух делителей)

Итак, ребята, сегодня на уроке мы узнаем как называются такие числа. Откройте тетради, запишите число, классная работа и тему урока “Простые и составные числа”. Слайд №8

Натуральное число может быть либо простым, если оно имеет два делителя или составным, если оно имеет более двух делителей. Единица – ни простое, ни составное число.

Задание: Записать в тетради три простых числа и три составных.

Любое составное число можно разложить на два множителя, каждый из которых больше 1. Простое число так разложить на множители нельзя.

Задание: Выполнить письменно №94. Слайд №9

Представлена таблица простых чисел. По таблице видно, что число 2 наименьшее простое четное число, остальные простые числа нечетные. Таблица простых чисел находится на форзаце вашего учебника.

Задание: Выполнить устно №89.

Два простых числа, разность которых равна 2, называются близнецами.

Найдите по таблице числа-близнецы. (Например: 17 и 19).

В настоящее время составление таблиц простых чисел можно “поручить” компьютерам, с их помощью уже получены огромные простые числа, которые “вручную”, наверное, никогда бы не были найдены. Однако компьютеры, даже и мощные, тоже имеют ограниченные возможности. И возникает такой естественный вопрос: можно ли построить, хотя бы в далеком будущем, такой мощный компьютер, чтобы он нашел, наконец, все простые числа? Оказывается, что ответ на этот вопрос уже есть и найден…больше двух тысяч лет назад. Слайд №8

Великий математик Древней Греции Евклид доказал, что полный список составить просто невозможно. Можно сказать также, что среди простых чисел нет самого большого числа. Так две с лишним тысяч лет назад Евклид лишил математиков надежды получить полный список простых чисел. Слайд №9

Для отыскания простых чисел другой греческий математик того же времени – Эратосфен придумал такой способ. Он записывал все числа от 1 до какого-то числа, а потом вычеркивал единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные 2 т. е. 4, 6, 8 и т.д.). Первым оставшимся числом после 2 было 3. Далее вычеркивались через два все числа, идущие после 3 (числа, кратные 3), далее через четыре числа идущие после 5 и так далее. В конце концов оставались не вычеркнутыми только простые числа. Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычеркивали, а выкалывали иглой, то таблица напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена.

4. Первичное осмысление и закрепление нового материала.

(Каждому ученику раздаются карточки с заданием.)

Вариант 1

Два делителя.

  1. Составное - 4; 1, 3, 9, 27.
  2. Составное - 713 285; 984; 12 327.
  3. Простое - 13; 73.
    100 263; 715; 1 712; 34; 80 121.

Вариант 2

Более двух делителей.

  1. Простое - 2; 1, 19.
  2. Составное - 300 099; 9 082 184; 912 327.
  3. Простое - 17; 71.
    7 775; 8 654; 81; 63; 80 127.

5. Подведение итогов. Слайд №10

Ребята, что сегодня на уроке мы узнали? (Мы узнали, что натуральные числа бывают простыми, составными)

Единица - какое число? (Ни простое, ни составное)

6. Информация о домашнем задании Слайд №11

(П. 4, ответить устно на вопросы стр. 17, письменно №111; №112.)

Loading...Loading...