Как теперь узнать свой знак зодиака. Как узнать свой реальный знак зодиака

В системах автоматики датчик предназначен для преобразования контролируемой или регулируемой величины (параметра регулируемого объекта) в выходной сигнал, более удобный для дальнейшего движения информации. Поэтому датчик нередко называют преобразователем, хотя этот термин является слишком общим, так как любой элемент автоматики и телемеханики, имея вход и выход, является в той или иной мере преобразователем.

В простейшем случае датчик осуществляет только одно преобразование Y=f(X), как, например, силы в перемещении (в пружине), или температуры в электродвижущую силу (в термоэлементе) и т.п. Такой вид датчиков называют датчики с непосредственным преобразованием. Однако в ряде случаев не удается непосредственно оказать воздействие входной величины Х на необходимую входную величину U (если такая связь неудобна или она не дает желаемых качеств). В этом случае осуществляют последовательные преобразования: входной величиной Х воздействуют на промежуточную Z, а величиной Z - на необходимую величину Y:

Z=f1(Х); Y=f2(Z)

В результате получается функция, связывающая Х с Y:

Y=f2=F(Х).

Число таких последовательных преобразований может быть и больше двух, и в общем случае функциональная связь Y с Х может проходить через ряд промежуточных величин:

Y=fn{...}=F(Х).

Датчики, имеющие такие зависимости, называются датчиками с последовательным преобразованием. Все остальные части называются промежуточными органами . В датчике с двумя преобразованиями промежуточные органы отсутствуют, в нем имеются только воспринимающий и исполнительный органы. Нередко один и тот же конструктивный элемент выполняет функции нескольких органов. Например, упругая мембрана выполняет функцию воспринимающего органа (преобразование давления в силу) и функцию исполнительного органа (преобразование силы в перемещение).

Классификация датчиков.

Исключительное многообразие датчиков, применяемое в современной автоматике, вызывает необходимость их классификации. В настоящее время известны следующие типы датчиков, которые наиболее целесообразно классифицировать по входной величине, практически соответствующей принципу действия:

Наименование датчика

Входная величина

Механический

Перемещение твердого тела

Электрический

Электрическая величина

Гидравлический

Перемещение жидкости

Пневматический

Перемещение газа

Термический

Оптический

Световая величина

Акустический

Звуковая величина

Радиоволновой

Радиоволны

Ядерные излучения

Здесь рассматриваются наиболее распространенные датчики, у которых хотя бы одна из величин (входная или выходная) – электрическая.

Датчики различают также по диапазону изменения входного сигнала. Например, одни электрические датчики температуры предназначены для измерения температуры от 0 до 100°С, а другие – от 0 до 1600°С. Очень важно, чтобы диапазон изменения выходного сигнала был при этом одинаков (унифицирован) для разных приборов. Унификация выходных сигналов датчиков позволяет использовать общие усилительные и исполнительные элементы для самых разных систем автоматики.

Электрические датчики относятся к наиболее важным элементам систем автоматики. С помощью датчиков контролируемая или регулируемая величина преобразуется в сигнал, в зависимости от изменения которого и протекает весь процесс регулирования. Наибольшее распространение в автоматике получили датчики с электрическим выходным сигналом. Объясняется это, прежде всего удобством передачи электрического сигнала на расстояние, его обработки и возможностью преобразования электрической энергии в механическую работу. Кроме электрических распространение получили механические, гидравлические и пневматические датчики.

Электрические датчики в зависимости от принципа производимого ими преобразования делятся на два типа – модуляторы и генераторы.

У модуляторов (параметрических датчиков) энергия входа воздействует на вспомогательную электрическую цепь, изменяя ее параметры и модулируя значение и характер тока или напряжения от постороннего источника энергии. Благодаря этому одновременно усиливается сигнал, поступивший на вход датчика. Наличие постороннего источника энергии является обязательным условием работы датчиков – модуляторов.

Рис. 1. Функциональные блоки датчика – модулятора (а) и датчика – генератора (б).

Модуляция осуществляется с помощью изменения одного из трех параметров – омического сопротивления, индуктивности, емкости. В соответствии с этим различают группы омических, индуктивных и емкостных датчиков.

Каждая из этих групп может делиться на подгруппы. Так, наиболее обширная группа омических датчиков может быть разделена на подгруппы: тензорезисторы, потенциометры, терморезисторы, фоторезисторы. Ко второй подгруппе относятся варианты индуктивных датчиков, магнитоупругие и трансформаторные. Третья подгруппа объединяет различного типа емкостные датчики.

Второй тип – датчики-генераторы являются просто преобразователями. Они основаны на возникновении электродвижущей силы под влиянием различных процессов, связанных с контролируемой величиной. Возникновение такой электродвижущей силы может происходить, например, вследствие электромагнитной индукции, термоэлектричества, пьезоэлектричества, фотоэлектричества и других явлений, вызывающих разделение электрических зарядов. Соответственно этим явлениям генераторные датчики подразделяются на индукционные, термоэлектрические, пьезоэлектрические и фотоэлектрические.

Возможны еще группы электротехнических, электростатических датчиков, датчиков Холла и др.

Потенциометрические и тензометрические датчики.

Потенциометрические датчики применяются для преобразования угловых или линейных Перемещений в электрический сигнал. Потенциометрический датчик представляет собой переменный резистор, который может включаться по схеме реостата или по схеме потенциометра (делителя напряжения).

Конструктивно потенциометрический датчик представляет собой электромеханическое устройство (рис. 2-1), состоящее из каркаса 1 с намотанным на него тонким проводом (обмотка) из сплавов с высоким удельным сопротивлением, скользящего контакта - щетки 2 и токопровода 3, выполненного в виде или скользящего контакта, или спиральной пружинки.

Каркас с намотанным проводом закрепляется неподвижно, а щетка соединяется механически с подвижной частью ОУ, перемещение которой нужно преобразовать в электрический сигнал. При перемещении щетки изменяется активное сопротивление Rх участка провода между щеткой и одним из выводов обмотки датчика.

В зависимости от схемы включения датчика перемещение может быть преобразовано в изменение активного сопротивления или тока (при последовательной схеме включения) или в изменение напряжения (при Включении по схеме делителя напряжения). На точность преобразования при последовательном включении значительное влияние оказывает изменение сопротивления соединительных проводов, переходного сопротивления между щеткой и обмоткой датчика.

В устройствах автоматики чаще применяется включение потенциометрических датчиков по схеме делителя напряжения. При одностороннем перемещении подвижной части ОУ применяют однотактную схему включения, дающую нереверсивную статическую характеристику. При двустороннем перемещении применяют двухтактную схему включения, дающую реверсивную характеристику (рис. 2-2).

В зависимости от конструкции и функционального закона, связывающего выходной сигнал датчика с перемещением щетки, различают потенциометрические датчики нескольких типов.



Линейные потенциометрические датчики.

Они имеют одинаковое сечение каркаса по всей длине. Диаметр провода и шаг намотки у них постоянны. В режиме холостого хода (при нагрузке Rn→∞ и I→0) выходное напряжение линейного потенциометрического датчика Uвых пропорционально перемещению щётки х: Uвых = (U0/L)х, где U0 - напряжение питания датчика; l-длина намотки. Напряжение питания датчика U0 и длина намотки L являются постоянными величинами, поэтому в окончательном виде: Uвых = kx, где k=U0/L- коэффициент передачи.



Функциональные потенциометрические датчики.

Они имеют функциональную нелинейную зависимость между перемещением щетки и выходным напряжением: Uвых= f(х). Часто применяются функциональные потенциометры, имеющие тригонометрическую, степенную или логарифмическую характеристику. Применяют функциональные потенциометры в аналоговых автоматических вычислительных устройствах, в поплавковых измерителях уровня жидкости для баков сложной геометрической формы и т. д. Получить требующуюся функциональную зависимость у потенциометрических датчиков можно различными методами: изменением высоты каркаса потенциометра (плавно или ступенчато), шунтированием участков обмотки потенциометра резисторами.

Многооборотные потенциометрические датчики.

Они являются конструктивной разновидностью линейных потенциометрических датчиков с угловым перемещением щетки. У многооборотных датчиков щетка должна повернуться на угол 360° несколько раз, чтобы переместиться на всю длину намотки L. Достоинствами многооборотных датчиков являются высокая точность, малый порог чувствительности, небольшие габариты, недостатками - относительно большой момент трения, сложность конструкции, наличие нескольких скользящих контактов

и трудность использования в быстродействующих системах.

Металлопленочные потенциометрические датчики.

Это новая перспективная конструкция потенциометрических датчиков. Каркас у них представляет собой

стеклянную или керамическую пластину, на которую наносится тонкий слой (несколько микрометров) металла с высоким удельным сопротивлением. Съем сигнала у металлопленочных потенциометрических датчиков осуществляется металлокерамическими щетками. Изменение ширины металлической пленки или ее толщины позволяет получить линейную или нелинейную характеристику потенциометрического датчика, не изменяя его конструкции. Используя обработку электронным или лазерным лучом, можно осуществлять автоматическую подгонку сопротивления датчика и его характеристики к заданным значениям. Габариты металлопленочных потенциометрических датчиков существенно меньше, чем проволочных, а порог чувствительности практически равен нулю ввиду отсутствия витков обмотки.

Оценивая потенциометрические датчики, следует отметить наличие у них как существенных достоинств, так и крупных недостатков. Их достоинствами являются: простота конструкции; высокий уровень выходного сигнала (напряжение - до нескольких десятков вольт, ток - до нескольких десятков миллиампер); возможность работы как на постоянном, так и на переменном токе. Их недостатка ми являются: недостаточно высокая надежность и ограниченная долговечность из-за наличия скользящего контакта н истирания обмотки; влияние на характеристику сопротивления нагрузки; потери энергии за счет рассеяния мощности активным сопротивлением обмотки; сравнительно большой момент, необходимый для вращения подвижной части датчика со щеткой.

Лабораторная работа

ИССЛЕДОВАНИЕ РАБОТЫ ДАТЧИКОВ

Приборы и принадлежности :

четыре транзистора, металлическая балка, набор грузов для нагружения балки, микроамперметр, потенциометр, источник питания, термопара, милливольтметр.

Цель работы :

1.Изучение тензорезистивного проволочного датчика и получение его характеристик.

    Изучение датчика температуры - термопары.

ТЕОРИЯ

1. УСТРОЙСТВО И КЛАССИФИКАЦИЯ ДАТЧИКОВ

Датчик - устройство, преобразующее внешнее воздействие в электрический сигнал. В медицине и биологии датчики используются в качестве устройств съема информации о медико-биологической системе, если исследуемый параметр имеет неэлектрическую природу. Простейшая схема датчика дана на рис.1

Исследуемый параметр медико-биологической системы X воздействует на преобразователь 1, превращающий Х в электрический сигнал Y.(Рис.1а) Величину X называют естественной входной величиной, величину Y - выходной величиной. При использовании нескольких преобразователей применяют каскадное включение (Рис.1б): входная величина X поочередно превращается в величины X 1 , X 2 , X 3 , ..., Y.

Преобразующие свойства датчиков определяются их характеристикой, чувствительностью, порогом чувствительности, пределом преобразования, номинальной погрешностью.

Характеристикой датчика называют функциональную зависимость выходной величины y от входной величины x , то есть выражение . Обычно стремятся использовать линейную зависимость между выходным сигналом и выходной величиной. Если это не удается, то используют другие виды зависимости - квадратичную, логарифмическую, экспоненциальную и т.д. На рис.2 дана линейная характеристика датчика.x -изменение входной величины, y - изменение выходной величины.

Чувствительностью датчика называют отношение Чувствительность показывает, какое изменение выходной величины соответствует изменению входной величины

Порогом чувствительности датчика называют минимальное значение изменения входной величины ( x min ), которое может зарегистрировать данный датчик.

Предел преобразования датчика - это максимальное значение входной величины (x max ), которое датчик может преобразовать без искажений.

Информация о входной величине может быть искажена вследствие погрешностей, возникающих при работе датчика. Из-за погрешностей характеристика датчика из линии размывается в полосу определенной ширины.

Среднюю линию полосы называют номинальной характеристикой. Величину b/2, равную половине ширины полосы, называют номинальной погрешностью датчика. Номинальную характеристику и номинальную погрешность указывают в паспорте датчика.

Погрешности датчиков обусловлены следующими причинами:

    непостоянством функции преобразователя во времени из-за старения и коррозии материалов, из-за износа подвижных частей датчика;

    несовершенством технологии изготовления датчиков (не строго выдержанные геометрические размеры, разброс параметров исходных материалов, неточность настройки и регулировки и т.п.);

    инерционными свойствами датчика (изменения выходных величин запаздывают по отношению к соответствующим изменениям входной величины);

    обратным воздействием датчика на медико-биологическую систему, что приводит к искажению информации об исследуемом параметре x .

В зависимости от носителя информации о входной величине , датчики подразделяются на электромеханические, электростатические, электромагнитные, электронные, термоэлектрические и т.д.

Различают два типа датчиков: генераторные и параметрические .

Генераторными называют датчики, в которых под воздействием входной величины генерируется разность потенциалов, ЭДС, ток.

К параметрическим относятся датчики , в которых под воздействием входной величины изменяется какой-либо параметр (сопротивление, индуктивность, емкость и т.д.).

Генераторные датчики .

В качестве генераторных датчиков рассмотрим термопару, пьезоэлектрический датчик и индукционный датчик.

Термопары относятся к термоэлектрическим преобразователям.

Термопара представляет замкнутую цепь из двух разнородных металлических проводников (Рис.3).

Контакты металлов A и К (спаи) поддерживают при разных температурах. Один спай называют контрольным (К). Его температура Т К поддерживается постоянной при помощи термостата. Второй спай (А) - рабочий. Он помещается в среду, температуру которой Т А надо измерить. В цепь термопары включается измерительный прибор. Если температура рабочего спая Т А отличается от температуры контрольного спая Т К, то в цепи термопары возникает термоэлектродвижущая сила (ТЭДС), величина которой прямо пропорциональна разности температур рабочего и контрольного спаев и определяется соотношением

ТЭДС = А - Т К ),

где - удельная ТЭДС, показывающая, какая ТЭДС возникает в данной цепи при разности температур контактов в один градус.

Измеряя ТЭДС, можно определить разность температур, а, следовательно, и температуру рабочего контакта. Таким образом, термопара является датчиком температуры. Входной величиной такого датчика является разность температур, выходной - возникающая в термопаре электродвижущая сила.

Пьезоэлектрические датчики . Их работа основана на явлении прямого пьезоэффекта, который заключается в том, что на противоположных концах кристаллической пластинки возникают заряды различных знаков, если пластинку деформировать. Механическое напряжение преобразуется в разность потенциалов между ее концами. Пьезодатчик используют для измерения различных физических величин: механических напряжений, переменных сил, скоростей, ускорений, давления и т.д.

Индукционные датчики . Принцип их действия основан на явлении электромагнитной индукции. Примером такого датчика может быть система из постоянного магнита (или электромагнита) и подвижного замкнутого проводящего контура (подвижной катушки). При поступательном или вращательном движении катушки в магнитном поле в ней наводится ЭДС индукции, возникает индукционный ток, величина которого зависит от скорости движения катушки. Входной величиной такого датчика является скорость или ускорение поступательного или вращательного движения рамки, выходной - возникающая в рамке ЭДС индукции

Параметрические датчики .

Примерами могут служить емкостные, индуктивные, резистивные датчики.

Емкостной датчик . В качестве примера может быть использован, например, плоский конденсатор. Емкость C плоского конденсатора определяется соотношением гдеS - площадь обкладки конденсатора, d - расстояние между обкладками, - диэлектрическая проницаемость вещества между обкладками. Если сместить относительно друг друга обкладки заряженного конденсатора, то изменится его электроемкость и соответственно изменится разность потенциалов между его обкладками. С помощью таких датчиков можно измерять механические перемещения, толщину и однородность диэлектрика и т.п.

Индуктивный датчик в простейшем варианте представлен на рис.4 . Катушка 1 намотана на замкнутый сердечник 2. Якорь 3 может перемещаться относительно сердечника и замыкать последний. При перемещении якоря изменяется индуктивность катушки. А это приводит к изменению индуктивного сопротивления цепи и, в конечном итоге, к изменению тока в цепи катушки. Входной величиной такого датчика является механическое перемещение якоря, выходной - ток в цепи катушки.

Разновидностью индуктивных датчиков являются магнитоупругие датчики. Их работа основана на изменении магнитной проницаемости сердечника катушки, если сердечник деформировать - сжать, растянуть и т.п. Изменение магнитной проницаемости сердечника приводит к изменению индуктивности катушки. Входной величиной такого датчика является механическая деформация, механическое напряжение, выходной - сила тока в цепи катушки.

Резистивные датчики . В качестве таковых рассмотрим тензорезисторы (тензосопротивления). Тензорезисторы иначе называют тензодатчиками.

Принцип действия тензодатчиков основан на тензоэффекте. Тензоэффект проявляется в том, что активное сопротивление проводника зависит от механической деформации: от сжатия, растяжения, изгиба, кручения.

Различают тензодатчики с линейным и объемным тензоэффектом.

Датчики с линейным тензоэффектом изготовляют из тонкой проволоки (см. практическую часть). Сопротивление проволоки рассчитывают по формуле где - удельное сопротивление проволоки, l - ее длина, S - площадь поперечного сечения. При деформации датчика одновременно изменяются длина l и поперечное сечение S , что приводит к изменению сопротивления и силы тока в цепи датчика. Датчики с линейным тензоэффектом используют для измерения механических перемещений, деформаций, механических напряжений и давления.

Датчики с объемным тензоэффектом представляют собой столбики из вещества, сопротивление которого сильно изменяется в зависимости от давления окружающей среды. Применяют такие датчики в качестве манометров для измерения высоких и сверхвысоких давлений.

В завершение этого раздела необходимо несколько слов сказать об электронных датчиках , которые в настоящее время получили широкое распространение. В них преобразование неэлектрической величины в электрическую основано на электронных процессах. К электронным датчикам относятся вакуумные фотоэлементы, в основе работы которых лежит внешний фотоэффект и полупроводниковые фотоэлементы, работающие на внутреннем фотоэффекте. Фотоэлектронные датчики используют для измерения светового потока, силы света, освещенности, для исследования прозрачности и мутности растворов в колориметрах и нефелометрах. С помощью фотоэлементов можно вести счет предметов, измерять механические перемещения, скорости, ускорения и т.д.

2.ДАТЧИКИ МЕДИКО-БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

Датчики медико-биологической информации преобразуют биофизические и биохимические величины в электрические сигналы, «переводят» информацию с «физиологического языка» организма на язык, понятный электронным устройствам.

Датчики медико-биологической информации подразделяются на две группы: биоуправляемые и энергетические.

Биоуправляемые датчики реагируют непосредственно на медико-биологическую информацию, поступающую от объекта исследования. Они могут быть как генераторными (активными), так и параметрическими (пассивными).

Энергетические датчики создают в исследуемом объекте энергетический поток со строго определенными, постоянными во времени параметрами. Исследуемая величина воздействует на этот поток, модулирует его изменения, пропорциональные изменениям самой величины. К датчикам такого типа относятся фотоэлектрические и ультразвуковые.

Медико-биологические датчики подразделяются на датчики температуры, датчики системы дыхания, датчики сердечно-сосудистой системы, датчики опорно-двигательной системы и т.д.

Датчики температуры . В качестве таких датчиков используются металлические и полупроводниковые термопары, а также металлические и полупроводниковые терморезисторы.

Датчики системы дыхания используют для определения частоты дыхания, объема вдыхаемого и выдыхаемого воздуха, эффективности дыхания. С этой целью используют терморезисторные и тензорезисторные датчики. (Терморезисторный датчик иначе называют термистором .)

Например, датчик контроля частоты дыхания представляет собой термистор, вмонтированный в специальную клипсу. Клипса прикрепляется на крыло носа и обдувается потоком воздуха. При этом сопротивление термистора изменяется с частотой дыхания вследствие изменения температуры вдыхаемого и выдыхаемого воздуха. На выходе датчика снимается последовательность импульсов тока с частотой, соответствующей частоте дыхания.

Контроль эффективности дыхания можно осуществить путем фотометрического измерения процентного содержания гемоглобина в периферической артериальной крови. Содержание гемоглобина определяется оксигемометром - фотоэлектрическим датчиком, который в виде клипсы надевается на мочку уха. Чувствительным элементом такого датчика является фотосопротивление, располагаемое по одну сторону мочки и освещаемое лампочкой осветителя, находящегося по другую сторону мочки. Плотность светового потока через мочку зависит от количества гемоглобина в крови.

Датчики сердечно-сосудистой системы позволяют определять пульс, систолическое и диастолическое давление, тоны и шумы сердца, циркуляцию крови, импеданс тканей и органов и т.д.

Для записи пульса используют пьезоэлектрические датчики . Основной частью такого датчика является кристаллическая пластинка из сегнетоэлектрика, укрепленная одним концом в держателе. Держатель находится на манжете, надеваемой на запястье. Свободный конец пластинки посредством пуговки соприкасается со стенкой лучевой артерии. Колебания стенки артерии передаются кристаллической пластинке, вызывают в ней деформацию изгиба, что приводит к возникновению на противоположных поверхностях пластинки переменной разности потенциалов, повторяющей по форме колебания стенки артерии. Эта разность потенциалов подается на усилитель, а затем на регистрирующее устройство. Кривая, записанная при этом, называется сфигмограммой.

При исследовании тонов и шумов сердца и записи фонокардиограмм применяются пьезоэлектродинамические микрофоны, реагирующие на акустические сигналы.

Для измерения артериального давления используются индуктивные и емкостные датчики.

Для измерения давления крови непосредственно внутри сосуда используются тензорезистивные датчики. Широкому применению тензорезисторов в медицине способствуют их очень малые размеры и масса, благодаря чему возможно создание миниатюрных датчиков. Которые располагают на конце тонкого гибкого катетера, с помощью которого датчики вводятся в сосуды, а по сосудам - в полости сердца.

Различают проволочные, фольговые и полупроводниковые тензорезисторы. Проволочный тензодатчик для измерения внутрисосудистого давления представляет собой тонкую кремнийорганическую диафрагму, закрепленную в металлическом кольце на конце катетера. На поверхности диафрагмы расположены тензосопротивления, соединенные по мостиковой схеме, подводящие провода которой проходят внутри катетера. В цепь датчика включен измерительный прибор, проградуированный в единицах давления, и источник постоянного тока. Кровь давит на диафрагму, деформирует тензорезисторы. Что приводит к соответствующим изменениям сопротивления цепи и силы тока в ней.

Изучение кровотока осуществляется с помощью электромагнитных и ультразвуковых датчиков. Электромагнитные датчики измерения скорости кровотока основаны на эффекте Холла. Ультразвуковые датчики скорости кровотока работают на эффекте Доплера. Конструктивно такой датчик состоит из двух пьезоэлектрических пластинок. Одна из пластин служит приемником, а другая - источником ультразвуковой волны.

Ультразвуковая волна с частотой 0 , испущенная источником, отражается движущимся объектом (эритроцитом) в сторону приемника. Приемник воспринимает волну с частотой . Расчеты показывают, что разность частот  0 , называемая доплеровским сдвигом частоты, определяет соотношением

где v- скорость движущегося объекта (скорость кровотока),

U - скорость ультразвуковой волны. Так как скорость распространения ультразвука в крови значительно больше скорости движущегося объектов (U»v), то последнюю формулу можно записать в виде откуда для скорости кровотока получаем выражениеДоплеровские датчики используют также для определения скорости движения клапанов и стенок сердца (доплеровская эхокардиография).

ПРАКТИЧЕСКАЯ ЧАСТЬ

1. Изучение тензорезистора .

Проволочный тензорезистор (Рис 5.) изготавливается из тонкой константановой проволоки (1) диаметром 20-30 мкм, сложенной в виде плоской спирали и наклеенной на тонкую пленочную основу (2).

Сверху спираль закрыта такой же пленкой. С помощью электродов (3) датчик включается в электрическую цепь, содержащую источник питания и измерительный прибор. Деформация основы датчика ведет к изменению длины и поперечного сечения проволоки, что вызывает соответствующие изменения сопротивления тензорезистора и силы тока в цепи. Установка для изучения тензодатчика представлена на Рис.6.

Металлическая балка Б, закрепленная с одного конца, нагружена грузом Р. Тензорезисторы R 1 , R 2 , R 3 и R 4 наклеены в месте наибольшего изгиба балки вблизи ее заделки в опору. Датчики R 1 и R 2 , расположенные на верхней плоскости балки, работают в режиме растяжения. Датчики R 3 и R 4 , наклеенные снизу балки, испытывают деформацию растяжения. Тензосопротивления соединены по схеме моста Уитстона (Рис.7). Мост считают сбалансированным, если ток через микроамперметр не протекает, то есть потенциалы в точках В и Д равны. Это условие выполняется, если имеет место соотношение

R 1 R 2 = R 3 R 4

При нагружении балки это равенство переходит в неравенство

R 1 R 2 R 3 R 4 ,

которое выражено тем сильнее, чем больше нагрузка на балку.

Таким образом, чем сильнее нагружена балка, тем больше ток через микроамперметр.

Входной величиной такой системы (преобразователя механической деформации в изменение электрического тока) является груз Р, изгибающий балку, выходной величиной является ток через микроамперметр. Схема преобразования входной величины в выходную может быть представлена следующим образом: P l R  , где P - изменение нагрузки на балку, l - изменение длины датчиков вследствие деформации, R - изменение сопротивления датчиков,  - изменение тока через микроамперметр.

Порядок выполнения работы

    Собрать электрическую цепь по схеме рис. 7

    При ненагруженной балке с помощью потенциометра Д сбалансировать мостиковую схему (добиться отсутствия тока в микроамперметре).

    Постепенно нагружать балку гирями 1, 2, 3, 4, 5 кг и через каждый килограмм нагрузки снимать показания микроамперметра. Данные занести в таблицу.

n- число делений микроамперметра

при нагружении

при разгружении

    Последовательно снимать гири по килограмму, записывая показания микроамперметра при разгружении балки.

    Вычислить средние значения показаний микроамперметра при данной нагрузке. По полученным данным построить характеристику датчика n=f(P), где n - число делений микроамперметра при данной нагрузке P.

    Определить цену деления прибора

k = P / n (кГ/дел)

    Изучение датчиков температуры

В данной работе в качестве датчика температуры используется термопара, изготовленная из меди и константана. Термопара проградуирована. Градуировочный график прилагается. Определение температурной зависимости сопротивления полупроводника проводится для термистора - одного из самых простых полупроводниковых приборов.

В полупроводниках электрическое сопротивление в значительной степени зависит от температуры. Зависимость сопротивления полупроводника от температуры в определенных температурных интервалах может быть описана выражением R=R 0 ·exp(-W/2kT), где Т - абсолютная температура, k - постоянная Больцмана, W - энергия активации полупроводника (термистора), exp - то же самое, что e - основание натурального логарифма. Таким образом, сопротивление полупроводника уменьшается по экспоненциальному закону. Зависимость сопротивления полупроводника (термистора) от температуры используется для измерения температуры по силе тока в цепи с полупроводником.

Существуют термисторы для измерения как очень высоких (Т  1300 0 К), так и очень низких (Т  4-80 0 К) температур.

В медицине широко применяются электротермометры, датчиком температуры в которых является термистор. К достоинствам электротермометров следует отнести их малую инерционность, высокую чувствительность, возможность изготовления малогабаритных датчиков, возможность измерения температур на расстоянии. К недостаткам относятся нелинейная шкала и старение. Термопары обладают меньшей чувствительностью, однако лишены указанных недостатков.

Для определения температурной зависимости сопротивления термистора последний вместе с активным термоспаем А термопары фиксируют в дюралевом бруске. Для чего в бруске проделывается отверстие, заполняемое непроводящей жидкостью (масло, глицерин и т.д.). Термо-эдс термопары измеряют милливольтметром. Сопротивление исследуемого термистора определяют мультиметром. Контрольный термоспай К термопары опускают в сосуд Дьюара.

Порядок выполнения работы.

    Термопару подключить к клеммам милливольтметра.

    Включить милливольтметр в сеть.

    С помощью переключателя, расположенного на правой боковой панели, установить нуль милливольтметра в режиме «арретир».

    Перевести переключатель пределов измерений в положение «5 mV». Рассчитать цену деления милливольтметра.

    Опустить контрольный и рабочий спаи термопары в стакан с водой и установить нуль шкалы милливольтметра.

    Записать в тетрадь температуру контрольного спая t 0 k .

    Измерить температуру ладони в нескольких точках. Для этого приложить активный термоспай к ладони и определить соответствующую ТЭДС по милливольтметру. Используя градуировочный график и соотношение t 0 л = t 0 k + t 0 , определить температуру ладони.

    Аналогично измерить температуру шеи, мочки уха, щеки, подбородка и т.д.

    Выключить милливольтметр. Установить милливольтметр в положение «Арретир».

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Какие устройства называются датчиками. Роль датчиков в медико-биологических измерениях.

    Что называют характеристикой датчика, чувствительностью, порогом чувствительности, номинальной погрешностью датчика?

    Дать понятие о генераторных и параметрических датчиках. Примести примеры тех и других датчиков.

    Дать понятие о биоуправляемых и энергетических датчиках. Привести примеры.

    Объяснить устройство и принцип действия тензодатчиков, их применение в медицине.

    Объяснить устройство и принцип действия датчиков температуру (термопары и термистора) .

ГОСТ ИСО 5347-0-95

Группа П18

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Вибрация

МЕТОДЫ КАЛИБРОВКИ ДАТЧИКОВ ВИБРАЦИИ И УДАРА

Часть 0. Общие положения

Vibration. Methods for the calibration of vibration and shock pick-ups. Part 0. Basic concepts


ОКС 17 020
ОКП 42 7746

Дата введения 1997-07-01

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 183 "Вибрация и удар"

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 8-95 от 12 октября 1995 г.)

За принятие проголосовали

Наименование государства

Наименование национального органа по стандартизации

Республика Белоруссия

Белстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан

Туркменглавгосинспекция

Украина

Госстандарт Украины

3 Настоящий стандарт представляет собой полный аутентичный текст ИСО 5347-0-87 "Вибрация. Методы калибровки датчиков вибрации и удара. Часть 0. Общие положения"

4 ВВЕДЕН ВПЕРВЫЕ

5 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 30.05.96 N 339 межгосударственный стандарт ГОСТ ИСО 5347-0-95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1997 г.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на датчики (преобразователи) ускорения, скорости и перемещения линейной вибрации и удара и устанавливает основные положения методов их калибровки.

Стандарт не распространяется на датчики угловой вибрации, а также датчики силы, давления и деформации, даже в том случае, если они могут быть калиброваны подобными методами.

2 НОРМАТИВНЫЕ ССЫЛКИ

3 ОПРЕДЕЛЕНИЯ

Термины, применяемые в настоящем стандарте, и их определения - по ГОСТ 24346 и приведенные ниже.

3.1 Датчик - устройство, предназначенное для преобразования измеряемого параметра механического движения, например, ускорения, в величину, удобную для измерения или записи.

Примечание - Датчик может включать в себя дополнительные устройства, обеспечивающие необходимое рабочее напряжение, индикацию или запись его выходного сигнала и др.

3.1.1. Взаимный (обратимый) датчик - двусторонний электромеханический датчик, для которого отношение приложенного тока к возникающей силе (когда скорость движения датчика равна нулю) равно отношению приложенной скорости к возникающему напряжению (когда ток в датчике равен нулю). Такими датчиками являются электродинамический и пьезоэлектрический датчики.

3.1.2. Односторонний датчик - датчик, использующий тензочувствительные элементы, для которых электрическое возбуждение не вызывает ощутимый механический эффект в датчике.

3.2. Рабочий диапазон - диапазон частот или амплитуд, в котором датчик является линейным в пределах нормированных допусков.

3.3. Входной сигнал - сигнал, приложенный к входу датчика, например, затухающий сигнал, приложенный к его посадочной поверхности.

3.4. Выходной сигнал - сигнал, генерируемый датчиком, как отклик на входной сигнал.

3.5. Чувствительность (коэффициент преобразования) - для линейного датчика это отношение выходного сигнала к входному при синусоидальном воздействии, приложенном к посадочной поверхности вдоль оси чувствительности датчика. В общем случае, чувствительность включает в себя информацию как об амплитуде, так и о частоте и, следовательно, является комплексной величиной, зависящей от частоты.

Синусоидальное входное движение может быть выражено следующими уравнениями:

; (1)

; (2)

(3)

, (4)

где - комплексная величина перемещения;

- комплексная величина скорости;

- комплексная величина ускорения;

Комплексная величина выходного сигнала;

Амплитуда синусоидального перемещения;

Амплитуда синусоидальной скорости;

Амплитуда синусоидального ускорения;

Амплитуда выходного сигнала;

Круговая частота;

Фазовые углы;

Мнимая единица;

3.5.1 Чувствительность по перемещению в единицах выходного сигнала на метр рассчитывают по формуле

где - амплитуда чувствительности по перемещению;

- сдвиг фаз.

3.5.2 Чувствительность по скорости в единицах выходного сигнала на м/с рассчитывают по формуле

где - амплитуда чувствительности по скорости;

- сдвиг фаз.

3.5.3 Чувствительность по ускорению в единицах выходного сигнала на м/с рассчитывают по формуле

где - амплитуда чувствительности по ускорению;

- сдвиг фаз.

Примечания

1 Обычно чувствительность по перемещению определяют для датчиков перемещения; чувствительность по скорости - для датчиков скорости; чувствительность по ускорению - для датчиков ускорения. В общем случае амплитуды и фазовые углы чувствительности являются функциями частоты .

2 Датчики перемещения, скорости и ускорения, чувствительность которых при достижении нулевого значения частоты не становится равной нулю, называют датчиками с нулевой частотной характеристикой (характеристикой постоянного тока). При постоянном ускорении частота и сдвиг фаз равны нулю. Примерами датчиков с нулевой частотной характеристикой являются датчики ускорения, использующие в качестве чувствительных элементов тензорезисторы, потенциометры, дифференциальные трансформаторы, устройства балансировки силы (серво) или другие аналогичные элементы. Сейсмические генераторные датчики, такие как пьезоэлектрические и электродинамические датчики, являются примером датчиков, не имеющих нулевой частотной характеристики.

3.6 Относительная поперечная чувствительность (относительный коэффициент поперечного преобразования) - отношение выходного сигнала датчика, ориентированного основной осью чувствительности перпендикулярно направлению входного сигнала, к выходному сигналу этого датчика, основная ось чувствительности которого направлена вдоль того же входного сигнала.

3.7 Генератор вибрации - любое устройство для создания и передачи контролируемого движения посадочной поверхности датчика.

Примечание - Генераторы вибрации также называют вибровозбудителями, вибраторами и вибростендами.

4 ИЗМЕРЯЕМЫЕ ХАРАКТЕРИСТИКИ

4.1 Общие положения

Основной целью калибровки датчика является определение его чувствительности в рабочем диапазоне частот и амплитуд для той степени свободы, в которой датчик предназначен использоваться. Кроме того, может быть важна информация о чувствительности датчика к движению в направлении других пяти степеней свободы. Например, для линейных датчиков ускорения необходимо знать их чувствительность к движению, перпендикулярному направлению оси чувствительности и вращению. Другими важными факторами являются демпфирование, сдвиг фаз, нелинейность или вариация выходного сигнала при изменении амплитуды входного сигнала, чувствительность к воздействию температуры, давления и других внешних условий, таких, например, как движение соединительного кабеля.

4.2 Основные характеристики датчика

4.2.1 Амплитудно-частотная (АЧХ) и фазо-частотная (ФЧХ) характеристики

Чувствительность датчика определяют измерением параметров движения или входного сигнала, прикладываемого к датчику генератором вибрации, и выходного сигнала датчика. При этом датчик устанавливают таким образом, чтобы его ось чувствительности совпадала с направлением движения, возбуждаемого генератором вибрации. С помощью контролируемого регулируемого воздействия, амплитуда и частота которого лежат в пределах соответствующих диапазонов датчика, могут быть откалиброваны как датчики непрерывного действия, так и датчики максимальных значений.

Для выполнения резонансов датчика необходимо наблюдать за его выходным сигналом во время медленного непрерывного изменения частоты генератора вибрации во всем частотном диапазоне датчика.

В функции частоты определяется в основном амплитуда чувствительности. Однако для использования датчиков на частотах, близких к их нижним или верхним пределам, или для специальных целей может потребоваться знание их фазо-частотной характеристики. Она определяется путем измерения сдвига фаз между выходным сигналом датчика и входным механическим воздействием во всем интересующем диапазоне частот.

4.2.2 Нелинейность амплитудной характеристики (АХ)

Нелинейность АХ датчика (искажение амплитуды) определяют, измеряя амплитуду его выходного сигнала при изменении входного сигнала в рабочем диапазоне амплитуд от минимального до максимального значений. При использовании генератора синусоидальной вибрации измерения проводят на нескольких частотах.

Нелинейность АХ может иметь несколько форм. Чувствительность может изменяться постепенно с увеличением амплитуды, может иметь постоянное изменение, ведущее к смещению нуля после воздействия на датчик вибрации или удара, могут быть задержки, которые внезапно ограничивают диапазон движения.

Тип и значения нелинейности АХ датчика могут быть определены по его амплитудным искажениям и сравнением его резонансной кривой, фазового сдвига и затухания с соответствующими характеристиками идеального линейного датчика. Учитывая, что нелинейность зависит от значений измеряемых величин, ее необходимо определять на верхних пределах динамического диапазона датчика.

4.3 Характеристики влияния

4.3.1 Температурная характеристика

Чувствительность, относительное деформирование и резонансная частота многих датчиков находятся в функциональной зависимости от температуры. При определении температурной характеристики чаще всего используют метод сличения.

Испытуемый датчик размещают внутри термокамеры соосно с эталонным, который защищают от изменений температуры, располагая его снаружи термокамеры или другим способом. Изменение чувствительности эталонного датчика не должно превышать 2% в течение всего времени калибровки. Испытания проводят на частотах, где поперечное движение генератора вибрации не превышает 25% осевого движения. Генератор вибрации, крепление датчиков на частотах калибровки должны обеспечивать незначительное относительное движение между эталонным и испытуемым датчиками.

Альтернативным является метод, при котором эталонный и испытуемый датчики крепят на площадке внутри термокамеры. Этот метод ограничен диапазоном температур, в котором известны температурные свойства эталонного датчика.

Для датчиков, чувствительных к статическому ускорению, измеряют разбаланс нуля при максимальной и минимальной температурах.

Датчики с внутренним демпфированием больше 10% критического демпфирования следует калибровать как минимум на четырех частотах при одном значении амплитуды вибрации и при пяти значениях температуры, включая комнатную. Этот метод должен применяться при испытаниях, например, датчиков электродинамического типа, в которых используются катушки с проводом. Частоты выбирают из частотного диапазона в зависимости от предполагаемого использования.

У пьезоэлектрических датчиков после их стабилизации при максимальной температуре измеряют внутреннюю емкость и сопротивление. При этом, если его сопротивление настолько низкое, что влияет на низкочастотную область характеристики применяемого усилителя, необходимо откалибровать датчик в низкочастотной области при этой температуре. Для адекватного описания частотной характеристики испытания проводят на нескольких частотах. При этом калибруется полная система с использованием того усилителя, который будет эксплуатироваться с датчиком.

Температурную чувствительность вычисляют как разность между чувствительностью датчика, измеренной при нормальной температуре (20 °С) на частоте из диапазона частот, в котором частотная характеристика датчика линейна, и чувствительностью датчика при испытательной температуре. Эта разность выражается в процентах от чувствительности при нормальной температуре. Желательно использовать датчики, температурная чувствительность которых не превышает 15% во всем рабочем диапазоне температур.

Примечание - Высокая температура может влиять как на частотную характеристику в низкочастотной области, так и на помехоустойчивость и стабильность системы датчик - усилитель.

4.3.2 Чувствительность пьезоэлектрических датчиков к перепаду температур

Пьезоэлектрические датчики под действием перепада температур генерируют пироэлектрический сигнал. Это особенно очевидно для ферроэлектрических материалов. Значение пироэлектрического выходного сигнала зависит от химического состава кристалла и конструкции датчика. Обычно частота пироэлектрического выходного сигнала значительно меньше 1 Гц. Большинство пироэлектрических сигналов датчика фильтруются благодаря частотным характеристикам усилителей в низкочастотной области. Таким образом, пироэлектрический выходной сигнал зависит от скорости изменения температуры и от характеристик усилителя и датчика, используемых совместно.

Пироэлектрические испытания проводят, используя тот тип усилителя, с которым обычно используется датчик. Датчик крепят к алюминиевому бруску обычным способом крепления. Их быстро погружают в ванну с ледяной водой или другой подходящей жидкостью, температура которой отличается от нормальной приблизительно на 20 °С. Жидкость в ванне должна быть оговорена. Масса бруска должна быть приблизительно в 10 раз больше массы датчика. Должны быть приняты меры предосторожности, чтобы жидкость не проникла в датчик или чтобы сопротивление электрической изоляции не снизилось при соприкосновении с жидкостью и т.д. Максимальное значение выходного сигнала усилителя и время от начала погружения до момента достижения этого максимума измеряют на осциллографе постоянного тока или на самописце. Если выходной сигнал в течение первых двух секунд изменит полярность и достигнет максимума противоположной полярности, то значение и время этого максимума тоже должны быть зарегистрированы.

Для датчиков ускорения чувствительность к перепаду температур выражают в м·с/°С и определяют как частотное от деления максимального выходного сигнала датчика на произведение разницы между температурой жидкости в ванне и нормальной температурой на чувствительность датчика.

В особых случаях используют усилители, имеющие низкочастотную область значительно шире. Пироэлектрические испытания следует проводить с использованием именно таких специфических усилителей. Для случаев, когда скорость изменения температур сильно отличается от получаемой при условиях, описанных выше, могут быть проведены испытания, имитирующие определенное изменение температуры.

4.3.3 Относительная поперечная чувствительность датчика

Относительную поперечную чувствительность обычно определяют на одной частоте ниже 500 Гц. Используемая частота должна быть оговорена.

Синусоидальное движение воспроизводят на частоте, на которой движение в плоскости, перпендикулярной оси чувствительности, как минимум в 100 раз больше движения в направлении оси чувствительности. Для значений относительной поперечной чувствительности меньше 1% это требование является трудновыполнимым, поэтому для получения достоверных значений относительной поперечной чувствительности необходима большая осторожность и высокая квалификация.

Датчик крепят перпендикулярно направлению входного движения с помощью специального приспособления, позволяющего поворачивать его вокруг оси чувствительности на 360° с шагом не более 45°. Поворачивая датчик, определяют его максимальный выходной сигнал в поперечном направлении.

Примечание - Экспериментальные исследования поперечной чувствительности датчиков свидетельствуют о ее независимости от частоты до 2000 Гц. В настоящее время имеются ограниченные данные о поперечной чувствительности датчиков в частотном диапазоне от 2000 до 10000 Гц. Они обычно показывают, что поперечная чувствительность в этом диапазоне частот такого же порядка, как и на низких частотах (менее 500 Гц). Обычно считается, что у датчиков с осевой резонансной частотой более 30 кГц частота резонанса в поперечном направлении более 10 кГц и, следовательно, находится за рабочим диапазоном частот датчика. Для других типов вибрационных датчиков информации еще меньше. По возможности должна быть определена низшая частота резонанса датчика в поперечном направлении.

4.3.4 Ротационная чувствительность датчика

Некоторые линейные датчики вибрации восприимчивы к ротационному воздействию. Примерами таких датчиков являются изгибные пьезоэлектрические и пьезорезистивные датчики ускорения и маятниковые сбалансированные (серво) датчики. В настоящее время из-за недостаточной изученности и отсутствия соответствующих средств испытаний не могут быть стандартизованы методы определения ротационной чувствительности датчиков. Однако внимание к существованию ротационной чувствительности привлечено и нужно принимать меры предосторожности при других испытаниях для того, чтобы предотвратить погрешность измерения от этого эффекта.

4.3.5 Деформационная чувствительность датчика

Предпочтительным при определении изменения чувствительности датчика из-за прогиба его основания является следующий метод.

Датчик крепят на простой консольной балке, которая воспроизводит радиус кривизны 25 м и относительную деформацию =250·10.

Стальная консольная балка крепится к жесткой опоре. Балка имеет следующие размеры: ширина 76 мм, толщина 12,5 мм, длина 1450 мм. Собственная частота обычно близка к 5 Гц. Деформацию измеряют тензометрами, закрепленными на балке около места крепления датчика, расположенного на расстоянии 40 мм от места крепления конца балки. Движение в месте крепления должно контролироваться с помощью датчика, закрепленного с использованием изоляции для предотвращения прогиба его основания. При этом применяют датчик, чувствительность которого не менее чем в 10 раз больше чувствительности испытуемого датчика. Выходные сигналы от тензометров и испытуемого датчика регистрируют.

Систему возбуждают отклонением свободного конца балки вручную. Выходной сигнал испытуемого датчика снимают в точке, где деформация поверхности балки составляет 250·10. Это соответствует радиусу кривизны балки 25 м. Погрешность, обусловленная деформацией, равна разнице между движением балки в месте крепления испытуемого датчика и движением, измеренным с помощью этого датчика. Деформационную чувствительность, выраженную в единицах выходного сигнала на относительную деформацию , определяют делением значения этой погрешности на 250.

Деформационная чувствительность должна быть определена при различных амплитудах деформации и в различных направлениях. Максимальная деформационная чувствительность датчиков может привести к существенной погрешности измерений при определенных условиях применения и способах крепления.

4.3.6 Магнитная чувствительность датчика

Для определения магнитной чувствительности датчик помещают в известное однородное магнитное поле и поворачивают в нем. Максимальный выходной электрический сигнал датчика характеризует его магнитную чувствительность. Для датчиков ускорения магнитная чувствительность выражается в м·с/Тл; для датчиков скорости - в м·с/Тл. При этом вибрация и электрические шумы должны быть исключены.

4.3.7 Чувствительность датчика к крутящему моменту

Изменение чувствительности датчика от крутящего момента определяют, прикладывая к датчику момент, равный половине нормированного, нормированному и удвоенному нормированному. Этому испытанию подвергают только датчики, устанавливаемые с помощью винтов, болтов или других резьбовых соединений. Если крепление предусматривает более одного соединения, то соответствующие моменты должны быть приложены к каждому крепежному элементу. При этом необходимо убедиться в том, что посадочная поверхность датчика не имеет заусенцев или других дефектов, которые могут препятствовать плоской установке датчика. Поверхность, на которую устанавливают датчик, также должна быть плоской и гладкой. Рекомендуемые значения неплоскостности и шероховатости поверхности следующие: неплоскостность - не более 5 мкм; среднее квадратическое значение шероховатости - не более 2 мкм. Для установления датчика монтажная поверхность должна иметь отверстия с резьбой, перпендикулярные поверхности с неперпендикулярностью не более 0,05 мм. Обычно рекомендуется смазывать посадочные поверхности. Крутящий момент должен прикладываться к незакрепленному датчику, т.е. крутящий момент увеличивается от нулевого до каждого из трех испытательных значений.

Чувствительность к крутящему моменту определяют как изменение чувствительности датчика при половине или при удвоенном значении нормированного крутящего момента относительно его нормированного значения. Погрешность задания прикладываемого крутящего момента не должна превышать 15%.

4.3.8 Специальные условия окружающей среды

На работу некоторых типов датчиков могут влиять различные специальные условия окружающей среды, такие как электростатические, переменные магнитные и радиочастотные поля, акустические поля, кабельные эффекты и радиация.

В настоящее время нет общепринятых методик для оценки влияния таких специфических условий на датчик, хотя в тех случаях, когда ожидается их существенное влияние, такие испытания проводят.

5 МЕТОДЫ КАЛИБРОВКИ

5.1 Общие положения

Для выполнения прямой калибровки датчика применяют генератор вибрации, создающий на входе датчика регулируемый и измеряемый сигнал, и средства для регистрации или измерения выходного сигнала датчика.

Датчик должен быть прикреплен к генератору вибрации или размещен около него, если датчик предназначен для измерения относительного движения между датчиком и вибрирующим объектом. Крепление должно быть достаточно жестким, чтобы передавать движение от генератора вибрации датчику во всем частотном диапазоне датчика. Собственная частота системы, состоящей из датчика, рассматриваемого как масса, и крепления в виде пружины с одной степенью свободы, должна быть выше верхней частоты частотного диапазона генератора вибрации.

Генераторами вибрации являются: устройство для поворота датчика по отношению к силе гравитации, центрифуга, электродинамический генератор вибрации, наковальня баллистического маятника и др.

Устройство для поворота датчика и центрифугу используют для калибровки на нулевой частоте. Ротационную калибровку в гравитационном поле Земли применяют для низкочастотных датчиков. Электродинамический генератор вибрации обычно используют для калибровки датчиков в установившемся синусоидальном режиме. Баллистические маятники, создающие кратковременное воздействие, используют для определения собственной частоты датчика в ударном режиме.

Некоторые методы калибровки, описанные в этом стандарте, имеют специальное назначение. Тем не менее использование лазерного интерферометра рекомендуется для абсолютной калибровки и, главным образом, для калибровки эталонных датчиков предпочтительно на одной из частот 160; 80 или 16 Гц в зависимости от применения датчика. Этим методом может определяться и частотная характеристика датчика. Ее снимают на дискретных частотах во всем интересуемом диапазоне частот. Большинство других калибровочных потребностей может быть обеспечено сличением с эталонным датчиком, откалиброванным абсолютным методом. Калибровка обычно относится к движущемуся основанию датчика, а калибровка методом "спина к спине" - к закрепленному основанию испытуемого датчика.

5.2 Калибровка абсолютными методами

5.2.1 Калибровка методом измерения амплитуды перемещения и частоты

5.2.1.1 Общие положения

Многие динамические методы калибровки зависят от точности измерения амплитуды перемещения вибрации, которой подвергается датчик.

Калибровку методом измерения амплитуды перемещения и частоты обычно используют для датчиков непрерывного отсчета. Синусоидальное движение, создаваемое генератором вибрации, должно быть линейным, поперечные движения должны быть пренебрежимо малы.

Измеренное перемещение может быть использовано для расчета скорости , м/с, и ускорения , м/с, по формулам:

где =3,14 радиан, которые получаются простым и двойным дифференцированием перемещения по частоте . Эти формулы предполагают, что гармоники и шумовые составляющие движения останутся незначительными и после дифференцирования. Следовательно, необходимо минимизировать искажения от электрических источников энергии или других причин, таких, например, как механический резонанс. Гармоники также нежелательны, так как они могут возбуждать резонанс датчика.

Если амплитуда перемещения известна, чувствительность датчика может быть вычислена как отношение измеренного выходного сигнала датчика к амплитуде скорости или ускорения.

Амплитуда перемещения может быть измерена с помощью лазерного интерферометра.

Методы расчета, используемые в лазерной интерферометрии, обычно дают высокую точность в диапазоне частот до 600 Гц при ускорении 1000 м/с, что соответствует амплитуде перемещения 70 мкм: 1% неопределенности получается на частоте 600 Гц, 0,5% - в диапазоне от 80 до 160 Гц. Значительные погрешности в измерениях перемещения имеют место в том случае, когда референтное зеркало интерферометра колеблется с частотой (или гармоникой) возбуждения датчика. Погрешность может быть также результатом колебаний разделителя луча. Рекомендуется наблюдать за этими колебаниями, используя очень чувствительный датчик ускорения.

5.2.1.2 Теория идеального интерферометра

Принцип действия интерферометра показан на рисунке 1, где , и - векторы электрического поля; и - расстояния, которые проходят лучи после разделителя; - измеряемое перемещение.

Рисунок 1 - Принципиальная схема идеального интерферометра


Векторы электрического поля могут быть представлены формулами:

где , - постоянные лазерного излучения;

- длина волны лазерного излучения;

- угловая частота лазерного излучения.

Интенсивность фотодетектора выражается формулой

где и - постоянные системы;

Из выражения интенсивности фотодетектора видно, что максимум достигается при

где - число интерференционных полос (частота полос) и, следовательно, перемещение, соответствующее расстоянию между двумя максимумами интенсивности, равно

Тогда число максимумов за один период равно

где - амплитуда измеряемого перемещения, что обычно принимают как "отношение частот", так как оно может быть определено делением числа полос, подсчитанных за 1 с, на частоту вибрации.

Амплитуду перемещения рассчитывают по формуле

Если при этом измеряют и частоту вибрации, то можно рассчитать скорость и ускорение.

Эта же система может быть использована для измерения амплитуды перемещения на частотах за пределами рекомендованного ранее диапазона для метода счета полос.

Могут быть использованы и другие методы, учитывающие частотный спектр интенсивности . Разложение дает

где , , ..., - функции Бесселя -го порядка.

При этом можно выделить два способа обработки данного сигнала для измерения амплитуды перемещения .

а) Устанавливая амплитуду вибрации на уровне, при котором -я гармоника равна нулю, и решая уравнение , получаем .

б) В случае невозможности проведения измерений на уровнях амплитуды, при которых

значение перемещения можно получить из отношения двух гармоник, например, решением относительно уравнения

где , - функции Бесселя 1-го и 3-го порядков;

и - измеренные амплитуды первой и третьей гармоник.

5.2.1.3 Измерительная система

Пример измерительной системы показан на рисунке 2. Калибруемый датчик (пьезодатчик) является эталонным датчиком и чувствительность должна быть определена для верхней поверхности (посадочной поверхности эталонного датчика). Лазер имеет мощность сигнала 1 мВт, детектором является обычный кремниевый фототранзистор. Вместо встроенного кристаллического осциллятора используют импульсный генератор с целью получения требуемого сигнала для минимизации погрешности счета полос. Анализатор применяют для выделения необходимой частоты при использовании нулевого метода. Лазер, интерферометрическая система и вибростенд должны быть установлены на независимых тяжелых виброизолирующих блоках (например, масса каждого из блоков более 400 кг) для исключения колебаний референтного зеркала или разделителя луча интерферометра, вызванных реакцией основания вибростенда.

Рисунок 2 - Пример измерительной системы с использованием интерферометра

5.2.2 Калибровка методом взаимности

Первичная калибровка датчиков также может быть осуществлена методом взаимности. Она проводится реже, чем калибровка абсолютным методом, ввиду сложности проведения эксперимента и расчета. Теория взаимности применима для калибровки вибрационных датчиков в амплитудном диапазоне, где их выходной сигнал прямо пропорционален движению, создаваемому генератором вибрации.

Теория показывает взаимозависимость электрической и механической сторон электромеханического преобразователя. Для катушки возбуждения электродинамического вибростенда имеет место равенство отношений

где - сила, прикладываемая к механической стороне при разомкнутой цепи электрической стороны;

- напряжение на выходе электрической стороны при приложении силы к механической стороне;

Ток в электрической цепи при подключении напряжения к электрической стороне;

- скорость на механической стороне при подключении напряжения к электрической стороне.

При возбуждении калибратора переменным током определенной частоты, проходящим в его катушке возбуждения, чувствительность определяют как отношение напряжения на выходе катушки, чувствительной к скорости, к ускорению на поверхности монтажного стола

Цель метода взаимности - определение чувствительности с тем, чтобы по результатам измерения напряжения можно было рассчитать ускорение по формуле (22).

Чувствительность определяют из следующего выражения

где - механический импеданс датчика, кгм/с.

Величины и определяют из следующих двух экспериментов и вычислительных процедур.

Эксперимент 1

Несколько нагрузок последовательно устанавливают на монтажном столе калибратора. Для каждой из нагрузок и без них определяют коэффициент передачи между катушкой возбуждения и датчиком по формуле

где - ток в катушке возбуждения, А;

Напряжения на выходе датчика, В.

Эксперимент 2

Монтажный стол калибратора устанавливают (присоединяют) на генератор вибрации и подвергают синусоидальной вибрации. (Некоторые электродинамические вибрационные генераторы имеют две катушки возбуждения, механически соединенные с арматурой генератора и монтажным столом. В этом случае нет необходимости в использовании отдельного генератора вибрации). Измеряют отношение напряжения на выходе датчика к напряжению открытой цепи катушки возбуждения калибратора.

Процедура вычисления

Определяют значения ординаты и наклон функции , построенной относительно масс нагрузок, закрепленных на монтажном столе в эксперименте 1.

- значение с закрепленной нагрузкой массой ;

- значение при =0.

Эту функцию разделяют на действительную и мнимую части, из которых определяют действительную и мнимую части ее ординаты и наклона . Тогда значения и в выражении (23) рассчитывают по формулам:

где - угловая частота, рад/с;

- мнимая единица.

5.2.3 Калибровка на центрифуге

5.2.3.1 Одинарная центрифуга

Центрифуга состоит из сбалансированного стола или рычага, который может вращаться вокруг вертикальной оси с постоянной угловой скоростью. С помощью центрифуги на датчик ускорения можно подавать постоянное ускорение с высокой точностью в течение необходимого времени.

На одинарной центрифуге могут быть откалиброваны только линейные датчики ускорения с нулевой частотной характеристикой.

Для того чтобы откалибровать датчик ускорения, он должен быть помещен на столе или рычаге центрифуги таким образом, чтобы его ось чувствительности совпадала с радиусом окружности вращения. При этом ускорение , м/с, действующее на датчик, рассчитывают по формуле

где - угловая частота центрифуги, рад/с;

- расстояние от оси вращения до центра тяжести инерционной массы датчика, м.

Датчики крепят на таком расстоянии от оси вращения, чтобы отклонение инерционной массы датчика было пренебрежительно мало по сравнению со значением величины . Большинство датчиков имеет такую конструкцию, что довольно трудно измерить величину точно. Значение может быть определено по показаниям датчика, установленного в двух положениях с известным расстоянием . Желательно устанавливать такую скорость вращения, чтобы в обоих положениях к датчику было приложено приблизительно одинаковое ускорение. Значение величины во втором положении, обозначенной , рассчитывают по формуле

где - угловая частота в первом положении, для которого , рад/с;

где - угловая частота во втором положении, для которого , рад/с;


- выходной сигнал датчика при угловой частоте ;

Со значением и угловой частотой ускорение может быть рассчитано по формуле (27).

Определение величины может быть исключено, если датчик линейный в диапазоне ускорений, распространяющемся вниз до ускорения свободного падения . В этом случае датчик сначала калибруют на ускорении с помощью поворотной опоры. Затем датчик помещают на центрифугу и определяют частоту , на которой выходной сигнал соответствует ускорению, равному . Тогда приложенное ускорение , м/с, на другой угловой частоте рассчитывают по формуле

Угловая частота должна быть определена более точно, чем расстояние , так как приложенное ускорение зависит от квадрата угловой частоты. Большинство центрифуг, разработанных для калибровочных целей, оснащены тахометром, который непосредственно измеряет скорость вращения с погрешностью не более 2%. Еще большей точности можно достичь, используя стробоскоп или одно из устройств (например, устройство, использующее фотоэлектрический элемент или магнит), которое создает импульсы со скоростью, пропорциональной скорости вращения. Скорость импульсов может быть определена электронным счетчиком.

При калибровке электромеханических датчиков на центрифуге провода выводят через скользящие кольца и щетки. Так как датчики ускорения с нулевой частотной характеристикой относительно низкоимпедансные устройства, защита от внешних полей и кабельного шума не создает особых проблем. Электрический шум от изношенных колец хорошей конструкции пренебрежим при нормальных условиях. Однако некоторые датчики ускорения, использующие в качестве чувствительного элемента тензоэлементы, содержат только один или два активных элемента. В этом случае другие сопротивления моста Уитстона подключают снаружи. Для таких датчиков должен быть смонтирован полный мост на вращающемся столе во избежание ложных сигналов, которые будут возникать в результате небольших изменений сопротивления устройства скользящих колец. Также может быть использован и мост Кельвина.

При калибровке датчиков на маленьких ускорениях сила тяжести может оказать значительное влияние, если датчик чувствителен к поперечным ускорениям. Поэтому датчик должен быть размещен на центрифуге таким образом, чтобы его ось максимальной поперечной чувствительности находилась в горизонтальной плоскости.

Чувствительность датчиков ускорения на нулевой частоте может быть определена с погрешностью не более 1%. Калибровка на центрифуге не дает информации о рабочем частотном диапазоне датчика.

5.2.3.2 Наклонная центрифуга

Когда ось вращения центрифуги не параллельна вектору силы тяжести Земли, ускорение, приложенное к датчику, закрепленному на центрифуге, кроме центростремительного ускорения , будет иметь переменную гравитационную составляющую,

Ускорение силы тяжести Земли;

где - угол между осью вращения и вертикальной осью;

- переменный угол, образованный рабочей осью датчика и горизонтальной плоскостью.

Влияние гравитационной составляющей ускорения на датчик, представленный в виде системы пружина - масса, описано. Синусоидальное ускорение может быть приложено к датчику, когда =0 и =90°. В этом случае гравитационную составляющую ускорения определяют с минимальной неопределенностью. Ее пределом является ускорение на любой частоте вращения. Максимальная частота обычно меньше нескольких сотен герц, она ограничена конструкцией центрифуги и возможностью ее балансирования.

5.2.3.3 Двойная центрифуга

Двойная центрифуга состоит из маленькой центрифуги, эксцентрично установленной на большой, прочно закрепленной на стене. Вибрационный датчик, смонтированный на маленькой центрифуге, может быть приведен в движение независимо маленькой центрифугой или приводным ремнем со шкивом, закрепленным в пространстве концентрично с большой центрифугой. При движении обеих центрифуг с постоянными угловыми скоростями ось чувствительности датчика переменно меняет свое направление относительно центра большой центрифуги. Составляющую ускорения , м/с, приложенную вдоль оси чувствительности датчика в любой момент времени , рассчитывают по формуле

где - расстояние между центрами двух центрифуг, м;

- угловая частота большой центрифуги, рад/с;

- угловая частота маленькой центрифуги относительно большой центрифуги, рад/с; знак плюс ставят, когда направления вращений центрифуг совпадают, и минус - когда они противоположны.

- время, с;

- расстояние между центром тяжести сейсмической массы датчика и центром маленькой центрифуги, м.

Когда членом можно пренебречь, ускорение, приложенное вдоль оси чувствительности датчика, становится синусоидальным и рассчитывается по формуле

Член равен нулю, когда и равны, но противоположно направлены.

Существует также составляющая ускорения, направленная перпендикулярно оси чувствительности, которая делает этот метод неприемлемым для датчиков с высокой поперечной чувствительностью.

Выражение (32) верно и составляющая ускорения вдоль оси чувствительности датчика будет строго синусоидальной при приведенных ниже условиях. Центр шкива совпадает с центром большой центрифуги. Шкив такого же размера закреплен концентрично с маленькой центрифугой и соединен с другим шкивом ремнем. Большая центрифуга приводится в движение мотором. При этом угловые частоты обеих центрифуг вокруг их соответствующих центров будут всегда равны и противоположно направлены.

Двойную центрифугу используют для создания синусоидального ускорения до 500 м/с в диапазоне частот приблизительно от 0,7 до 10 Гц.

5.2.4 Гравитационная калибровка (калибратор с поворотной опорой)

Для калибровки линейных датчиков ускорения с нулевой частотной характеристикой и с незначительной поперечной чувствительностью используют калибратор с поворотной опорой, принцип действия которого основан на гравитации Земли. Он применяется в диапазоне ускорений от минус до плюс . Калибруемый датчик прикрепляют к платформе на конце рычага для измерения составляющей ускорения вдоль рычага. Рычаг может быть отклонен на угол относительно вертикальной оси между 0° и 180°. Он снабжен стрелкой для считывания значений угла с градуированного круга. Уровень основания, к которому прикреплен датчик, должен быть тщательно выставлен в положение =0°. Установка рычага с погрешностью не более 0,1° осуществляется с помощью отградуированного круга.

Составляющую ускорения вдоль рычага рассчитывают по формуле

Тогда изменение ускорения в зависимости от углового перемещения рассчитывают по формуле

Датчик ускорения подвергают воздействию составляющей ускорения под прямым углом к направлению оси чувствительности датчика, равной рассчитанной по формуле

Обычно это не влияет на результаты калибровки датчиков с незначительной поперечной чувствительностью.

Примечание - Для достижения удовлетворительных результатов может потребоваться виброизоляция средств испытаний. Снизить воздействие вибрации позволяет также электронное фильтрование и усреднение в измерителях напряжения постоянного тока.

5.2.5 Калибровка методом удара

Большинство абсолютных методов ударной калибровки основаны на принципе измерения скорости. Это связано с тем, что скорость может быть измерена практически. Обычно калибруемый датчик крепят на наковальне, подвешенной каким-нибудь способом в положении покоя. Затем молотком определенного вида ударяют по наковальне таким образом, чтобы вызвать ее кратковременное движение. Удар должен контролироваться, чтобы изменение скорости не было слишком быстрым или слишком медленным и не возбудило частотных составляющих за пределами рабочих диапазонов приборов. Калибруемые датчики скорости или ускорения должны иметь массу намного меньше, чем масса наковальни, на которой они крепятся. Направление оси чувствительности датчика должно точно совпадать с направлением силы удара во время столкновения. В процессе удара записывают выходной сигнал датчика во времени. Сразу после удара измеряют приращение скорости наковальни .

Приращение скорости может быть определено измерением времени движения наковальни в пределах известного расстояния. Для включения электронного таймера могут использоваться фотоэлектрические и магнитные датчики. Приращение скорости , м/с, являющееся прямым результатом воздействия ускорения, приложенного во время удара, рассчитывают по формуле

где и - время начала и конца удара;

- ускорение, м/с.

Тогда выходной сигнал датчика рассчитывают по формуле

где - чувствительность датчика в единицах выходного сигнала на м/с.

Объединив выражения (36) и (37), решение относительно даст

Формула (38) позволяет калибровать линейные датчики ускорения по записи выходного сигнала во время баллистического удара.

Если удар проводится по наковальне, расположенной на пружине с линейной характеристикой, то он имеет форму полусинусоидального импульса с площадью, равной , где и - высота и ширина импульса соответственно. Форма и длительность импульсов обычно регулируются изменением массы, упругости и других начальных условий, таких как высота падения, давление воздуха или других физических параметров в зависимости от типа генератора удара.

Обе методики (удар по свободной наковальне и удар по подпружиненной наковальне) применимы для получения значения , требуемого для формулы (38). Выходной сигнал датчика может быть зарегистрирован в процессе удара в виде функции времени быстродействующим осциллографом или с помощью запоминающего осциллографа с фотографированием. Значения напряжения и времени могут быть оценены наложением сигнала с известными напряжением и временем . Коэффициент напряжения и коэффициент временной шкалы рассчитывают по формулам

Площадь записанного выходного сигнала датчика рассчитывают по формуле

где и - начало и конец удара, деления шкалы времени;

- напряжение выходного сигнала, деления шкалы напряжений.

Подстановка этих выражений в формулу (38) дает

Площадь может быть получена графическим интегрированием записи ускорения во времени. При измерении площади под записью ускорения во времени обычно используют планиметрию. При определении площади необходимо соблюдать осторожность, обращая внимание на уход нуля, зашкаливание и дребезг.

Интеграл в уравнении (38) может быть также определен с помощью электронного интегратора или цифровых интегрирующих и суммирующих приборов. Это ускоряет процесс калибровки и уменьшает субъективные ошибки оператора.

Абсолютные методы ударной калибровки могут быть проведены с погрешностью менее 5% практически во всем разумном диапазоне амплитуд и длительностей удара. При этом предполагается, что калибруемый датчик имеет линейную частотную характеристику в интересующем диапазоне частот. Если это условие не выполняется, то значение результирующей погрешности очень трудно оценить. Кроме того, определенное значение чувствительности не дает никакой практической информации об амплитудно-частотной и фазо-частотной характеристиках. Однако это не ограничивает использование данного метода. Более существенной проблемой является обеспечение требуемой точности.

5.3 Калибровка методом сличения

Вибрационные датчики, откалиброванные одним из вышеизложенных методов, могут быть использованы в качестве эталонных для калибровки других датчиков. Метод, описанный в 5.2.1, является предпочтительным.

При калибровке методом сличения эталонный и калибруемый датчик, установленные соответствующим образом, подвергают одному и тому же движению на входе и измеряют их выходные сигналы и или отношение двух выходных сигналов. Если оба датчика чувствительны к одному и тому же параметру вибрации, т.е. оба чувствительны к скорости или к ускорению, и если характеристики обоих датчиков линейны, то амплитуда чувствительности датчика связана с соответствующей амплитудой чувствительности эталонного датчика 1 следующим соотношением

Калибровка методом сличения ограничена диапазоном частот, длительностью импульса и амплитудами, для которых датчик 1 был откалиброван. Также может быть определена и комплексная чувствительность датчика 2, если известна фазо-частотная характеристика датчика 1 и измерено отношение фаз между и .

Если два датчика чувствительны к различным параметрам вибрации, например, если датчик скорости сравнивают с датчиком ускорения, то чувствительность будет также связана с какой-то степенью . В рассматриваемом случае , рассчитанное по формуле (42), следует умножить на .

Наилучшие результаты обычно достигаются, когда датчики жестко установлены в положение "спина к спине" и их оси чувствительности параллельны направлению движения. Необходимо убедиться в том, что датчики 1 и 2 испытывают одно и то же движение. Если оба датчика линейны и размещены на столе генератора вибрации, качающиеся движения стола должны быть пренебрежительно малы. Искажения формы сигнала обычно не являются критичными для калибровки методом сличения, особенно если датчики чувствительны к одному и тому же параметру вибрации. Однако наличие гармоник в движении может увеличить выходные сигналы обоих датчиков на разные значения в зависимости от отношения чувствительностей датчиков на частотах гармоник.

Практически калибровка может быть выполнена с использованием электродинамического генератора вибрации (вибростенда). Эталонный датчик ("спина к спине") крепят на столе вибростенда некалиброванной поверхностью к столу. Калибруемый датчик размещают на "спине" эталонного.

Для использования метода сличения на высоких частотах эталонный датчик должен быть откалиброван с нагружением массой, равной массе калибруемого по нему датчика.

Электрический выходной сигнал предусилителя эталонного датчика может быть удобно и точно сравнен с выходным сигналом калибруемого датчика, в случае использования прецизионного усилителя с аттенюатором и компаратором.


Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: ИПК Издательство стандартов, 1996

Электротехническая энциклопедия #16.

Датчики

Классификация датчиков, основные требования к ним

Автоматизация различных технологических процессов, эффективное управление различными агрегатами, машинами, механизмами требуют многочисленных измерений разнообразных физических величин.

Датчики (в литературе часто называемые также измерительными преобразователями), или по-другому, сенсоры являются элементами многих систем автоматики - с их помощью получают информацию о параметрах контролируемой системы или устройства.

Датчик – это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик – это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.

Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.

В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура – 50%, расход (массовый и объемный) – 15%, давление – 10%, уровень – 5%, количество (масса, объем) – 5%, время – 4%, электрические и магнитные величины – менее 4%.

По виду выходной величины, в которую преобразуется входная величина , различают неэлектрические и электрические : датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.

Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:

Электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;

Электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;

Они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерений.

По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики-модуляторы). Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал.

Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра ( R , L или C ) датчика.

По принципу действия датчики также можно разделить на омические, реостатные, фотоэлектрические (оптико-электронные), индуктивные, емкостные и д.р.

Различают три класса датчиков:

Аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

Цифровые датчики, генерирующие последовательность импульсов или двоич­ное слово;

Бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: "включено/выключено" (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

Требования, предъявляемые к датчикам :

Однозначная зависимость выходной величины от входной;

Стабильность характеристик во времени;

Высокая чувствительность;

Малые размеры и масса;

Отсутствие обратного воздействия на контролируемый процесс и на контролируемый параметр;

Работа при различных условиях эксплуатации;

- различные варианты монтажа .

Параметрические датчики (датчики-модуляторы) входную величину X преобразуют в изменение какого-либо электрического параметра ( R , L или C ) датчика. Передать на расстояние изменение перечисленных параметров датчика без энергонесущего сигнала (напряжения или тока) невозможно. Выявить изменение соответствующего параметра датчика только и можно по реакции датчика на ток или напряжение, поскольку перечисленные параметры и характеризуют эту реакцию. Поэтому параметрические датчики требуют применения специальных измерительных цепей с питанием постоянным или переменным током.

Омические (резистивные) датчики – принцип действия основан на изменении их активного сопротивления при изменении длины l , площади сечения S или удельного сопротивления p :

R = p l / S

Кроме того, используется зависимость величины активного сопротивления от контактного давления и освещённости фотоэлементов. В соответствии с этим омические датчики делят на: контактные, потенциометрические (реостатные), тензорезисторные, терморезисторные, фоторезисторные .

Контактные датчики - это простейший вид резисторных датчиков, которые преобразуют перемещение первичного элемента в скачкообразное изменение сопротивления электрической цепи. С помощью контактных датчиков измеряют и контролируют усилия, перемещения, температуру, размеры объектов, контро­лируют их форму и т. д. К контактным датчикам относятся путевые и концевые выключатели , контактные термометры и так называемые электродные датчики , используемые в основном для измерения предельных уровней электропроводных жидкостей.

Контактные датчики могут работать как на постоянном, так и на переменном токе. В зависимости от пределов измерения контактные датчики могут быть одно предельными и многопредельными. Последние используют для измерения величин, изменяющихся в значительных пределах, при этом части резистора R , включенного в электрическую цепь, последовательно закорачиваются.

Недостаток контактных датчиков - сложность осуществления непрерывного контроля и ограниченный срок службы контактной системы. Но благодаря предельной простоте этих датчиков их широко применяют в системах автоматики.

Реостатные датчики представляют собой резистор с изменяющимся активным сопротивлением. Входной величиной датчика является перемещение контакта, а выходной – изменение его сопротивления. Подвижный контакт механически связан с объектом, перемещение (угловое или линейное) которого необходимо преобразовать.

Наибольшее распространение получила потенциометрическая схема включения реостатного датчика, в которой реостат включают по схеме делителя напряжения. Напомним, что делителем напряжения называют электротехническое устройство для деления постоянного или переменного напряжения на части; делитель напряжения позволяет снимать (использовать) только часть имеющегося напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. Переменный резистор, включаемый по схеме делителя напряжения, называют потенциометром.

Обычно реостатные датчики применяют в механических измерительных приборах для преобразования их показаний в электрические величины (ток или напряжение), например, в поплавковых измерителях уровня жидкостей, различных манометрах и т. п.

Датчик в виде простого реостата почти не используется вследствие значительной нелинейности его статической характеристики I н = f (х), где I н - ток в нагрузке.

Выходной величиной такого датчика является падение напряжения U вых между подвижным и одним из неподвижных контактов. Зависимость выходного напряжения от перемещения х контакта U вых = f (х) соответствует закону изменения сопротивления вдоль потенциометра. Закон распределения сопротивления по длине потенциометра, определяемый его конструкцией, может быть линейным или нелинейным.

Потенциометрические датчики, конструктивно представляющие собой переменные резисторы, выполняют из различных материлов - обмоточного провода, металлических пленок, полупроводников и т. д.

Тензорезисторы (тензометрические датчики ) служат для изме­рения механических напряжений, небольших деформаций, вибра­ции. Действие тензорезисторов основано на тензоэффекте, заключающемся в изменении активного сопротивления проводниковых и полупроводниковых материалов под воздействием приложенных к ним усилий.

Термометрические датчики (терморезисторы ) - сопротивление зависит от температуры. Терморезисторы в качестве датчиков используют двумя способами:

1) Температура терморезистора определяется окружающей средой; ток, проходящий через терморезистор, настолько мал, что не вызывает нагрева терморезистора. При этом условии терморезистор используется как датчик температуры и часто называется «термометром сопротивления».

2) Температура терморезистора определяется степенью нагрева постоянным по величине током и условиями охлаждения. В этом случае установившаяся температура определяется условиями теплоотдачи поверхности терморезистора (скоростью движения окружающей среды – газа или жидкости – относительно терморезистора, ее плотностью, вязкостью и температурой), поэтому терморезистор может быть использован как датчик скорости потока, теплопроводности окружающей среды, плотности газов и т. п. В датчиках такого рода происходит как бы двухступенчатое преобразование: измеряемая величина сначала преобразуется в изменение температуры терморезистора, которое затем преобразуется в изменение сопротивления.

Терморезисторы изготовляют как из чистых металлов, так и из полупроводников. Материал, из которого изготавливается такие датчики, должен обладать высоким температурным коэффициентом сопротивления, по возможности линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. В наибольшей степени всем указанным свойствам удовлетворяет платина; в чуть меньшей – медь и никель.

По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Индуктивные датчики служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивного датчика основан на изменении индуктивности обмотки на магнитопроводе в зависимости от положения отдельных элементов магнитопровода (якоря, сердечника и др.). В таких датчиках линейное или угловое перемещение X (входная величина) преобразуется в изменение индуктивности (L ) датчика. Применяются для измерения угловых и линейных перемещений, деформаций, контроля размеров и т.д.

В простейшем случае индуктивный датчик представляет собой катушку индуктивности с магнитопроводом, подвижный элемент которого (якорь) перемещается под действием измеряемой величины.

Индуктивный датчик распознает и соответственно реагирует на все токопроводящие предметы. Индуктивный датчик является бесконтактным, не требует механичесого воздействия, работает бесконтактно за счет изменения электромагнитного поля.

Преимущества

- нет механического износа, отсутствуют отказы, связанные с состоянием контактов

- отсутствует дребезг контактов и ложные срабатывания

- высокая частота переключений до 3000 Hz

- устойчив к механическим воздействиям

Недостатки - сравнительно малая чувствительность, зависимость индуктивного сопротивления от частоты питающего напряжения, значительное обратное воздействие датчика на измеряемую величину (за счет притяжения якоря к сердечнику).

Емкостные датчики - принцип действия основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость определяется выражением:

С = e 0 e S / h

где e 0 - диэлектрическая постоянная; e - относительная диэлектрическая проницаемость среды между обкладками; S - активная площадь обкладок; h - расстояние между обкладками конденсатора.

Зависимости C (S ) и C (h ) используют для преобразования механических перемещений в изменение емкости.

Емкостные датчики, также как и индуктивные, питаются переменным напряжением (обычно повышенной частоты - до десятков мегагерц). В качестве измерительных схем обычно применяют мостовые схемы и схемы с использованием резонансных контуров. В последнем случае, как правило, используют зависимость частоты колебаний генератора от емкости резонансного контура, т.е. датчик имеет частотный выход.

Достоинства емкостных датчиков - простота, высокая чувствительность и малая инерционность. Недостатки - влияние внешних электрических полей, относительная сложность измерительных устройств.

Емкостные датчики применяют для измерения угловых перемещений, очень малых линейных перемещений, вибраций, скорости движения и т. д., а также для воспроизведения заданных функций (гармонических, пилообраз­ных, прямоугольных и т. п.).

Емкостные преобразователи, диэлектрическая проницаемость e которых изменяется за счет перемещения, деформации или изменения состава диэлектрика, применяют в качестве датчиков уровня непроводящих жидкостей, сыпучих и порошкообразных материалов, толщины слоя непроводящих материалов (толщино­меры), а также контроля влажности и состава вещества.

Датчики – генераторы

Генераторные датчики осуществляют непосредственное преобразование входной величины X в электрический сигнал. Такие датчики преобразуют энергию источника входной (измеряемой) величины сразу в электрический сигнал, т.е. они являются как бы генераторами электроэнергии (откуда и название таких датчиков - они генерируют электрический сигнал).

Дополнительные источники электроэнергии для работы таких датчиков принципиально не требуются (тем не менее дополнительная электроэнергия может потребоваться для усиления выходного сигнала датчика, его преобразования в другие виды сигналов и других целей). Генераторными являются термоэлектрические, пьезоэлектрические, индукционные, фотоэлектрические и многие другие типы датчиков.

Индукционные датчики преобразуют измеряемую неэлектрическую величину в ЭДС индукции. Принцип действия датчи­ков основан на законе электромагнитной индукции. К этим датчикам относятся тахогенераторы постоянного и переменного то­ка, представляющие собой небольшие электромашинные генерато­ры, у которых выходное напряжение пропорционально угловой ско­рости вращения вала генератора. Тахогенераторы используются как датчики угловой скорости.

Тахогенератор представляет собой электрическую машину, работающую в генераторном режиме. При этом вырабатываемая ЭДС пропорциональна скорости вращения и величине магнитного потока. Кроме того, с изменением скорости вращения изменяется частота ЭДС. Применяются как датчики скорости (частоты вращения).

Температурные датчики. В современном промышленном производстве наиболее распространенными являются измерения температуры (так, на атомной электростанции среднего размера имеется около 1500 точек, в которых производится такое измерение, а на крупном предприятии химической промышленности подобных точек присутствует свыше 20 тыс.). Широкий диапазон измеряемых температур, разнообразие условий использования средств измерений и требований к ним определяют многообразие применяемых средств измерения температуры.

Если рассматривать датчики температуры для промышленного применения, то можно выделить их основные классы: кремниевые датчики температуры, биметаллические датчики, жидкостные и газовые термометры, термоиндикаторы, термисторы, термопары, термопреобразователи сопротивления, инфракрасные датчики.

Кремниевые датчики температуры используют зависимость сопротивления полупроводникового кремния от температуры. Диапазон измеряемых температур -50…+150 0 C . Применяются в основном для измерения температуры внутри электронных приборов.

Биметаллический датчик сделан из двух разнородных металлических пластин, скрепленных между собой. Разные металлы имеют различный температурный коэффициент расширения. Если соединенные в пластину металлы нагреть или охладить, то она изогнется, при этом замкнет (разомкнет) электрические контакты или переведет стрелку индикатора. Диапазон работы биметаллических датчиков -40…+550 0 C . Используются для измерения поверхности твердых тел и температуры жидкостей. Основные области применения – автомобильная промышленность, системы отопления и нагрева воды.

Термоиндикаторы – это особые вещества, изменяющие свой цвет под воздействием температуры. Изменение цвета может быть обратимым и необратимым. Производятся в виде пленок.

Термопреобразователи сопротивления

Принцип действия термопреобразователей сопротивления (терморезисторов) основан на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры (рассмотрен ранее).

Платиновые терморезисторы предназначены для измерения температур в пределах от –260 до 1100 0 С. Широкое распространение на практике получили более дешевые медные терморезисторы, имеющие линейную зависимость сопротивления от температуры.

Недостатком меди является небольшое ее удельное сопротивление и легкая окисляемость при высоких температурах, вследствие чего конечный предел применения медных термометров сопротивления ограничивается температурой 180 0 C . По стабильности и воспроизводимости характеристик медные терморезисторы уступают платиновым. Никель используется в недорогих датчиках для измерения в диапазоне комнатных температур.

Полупроводниковые терморезисторы (термисторы) имеют отрицательный или положительный температурный коэффициент сопротивления, значение которого при 20 0 C составляет (2…8)*10 –2 (0 C ) –1 , т.е. на порядок больше, чем у меди и платины. Полупроводниковые терморезисторы при весьма малых размерах имеют высокие значения сопротивления (до 1 МОм). В качестве полупров. материала используются оксиды металлов: полупроводниковые терморезисторы типов КМТ - смесь окислов кобальта и марганца и ММТ - меди и марганца.

Полупроводниковые датчики температуры обладают высокой стабильностью характеристик во времени и применяются для изменения температур в диапазоне от –100 до 200 0 С.

Термоэлектрические преобразователи (термопары) - п ринцип действия термопар основан на термоэлектрическом эффекте, который состоит в том, что при наличии разности температур мест соедине­ний (спаев) двух разнородных металлов или полупроводников в контуре возникает электродвижущая сила, называемая термо­электродвижущей (сокращенно термо-ЭДС). В определенном интер­вале температур можно считать, что термо-ЭДС прямо пропор­циональна разности температур ΔT = Т 1 – Т 0 между спаем и концами термопары.

Соединенные между собой концы термопары, погружаемые в среду, температура которой измеряется, называют рабочим концом термопары. Концы, которые находятся в окружающей среде, и которые обычно присоединяют проводами к измерительной схеме, называют свободными концами. Температуру этих концов необходимо поддерживать постоянной. При этом условии термо-ЭДС Е т будет зависеть только от температуры T 1 рабочего конца.

U вых = E т = С(Т 1 – Т 0) ,

где С – коэффициент, зависящий от материала проводников термопары.

Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 0 С и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от –200 до 2200 0 С.

Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.

Термопары имеют следующие преимущества : простота изготовления и надёжность в эксплуатации, дешевизна, отсутствие источников питания и возможность измерений в большом диапазоне температур.

Наряду с этим термопарам свойственны и некоторые недостатки - меньшая, чем у терморезисторов, точность измерения, наличие значительной тепловой инерционности, необходимость введения поправки на температуру свободных концов и необхо­димость в применении специальных соединительных проводов.

Инфрокрасные датчики (пирометры) - используют энергию излучения нагретых тел, что позволяет измерять температуру поверхности на расстоянии. Пирометры делятся на радиационные, яркостные и цветовые.

Радиационные пирометры используются для измерения температуры от 20 до 2500 0 С, причем прибор измеряет интегральную интенсивность излучения реального объекта.

Яркостные (оптические) пирометры используются для измерения температур от 500 до 4000 0 С. Они основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя (фотометрической лампы).

Цветовые пирометры основаны на измерении отношения интенсивностей излучения на двух длинах волн, выбираемых обычно в красной или синей части спектра; они используются для измерения температуры в диапазоне от 800 0 С.

Пирометры позволяют измерять температуру в труднодоступных местах и температуру движущихся объектов, высокие температуры, где другие датчики уже не работают.

Для измерения температур от – 80 до 250 0 С часто используются так называемые кварцевые термопреобразователи, использующие зависимость собственной частоты кварцевого элемента от температуры. Работа данных датчиков основана на том, что зависимость частоты преобразователя от температуры и линейность функции преобразования изменяются в зависимости от ориентации среза относительно осей кристалла кварца. Данные датчики широко используются в цифровых термометрах.

Пьезоэлектрические датчики

Действие пьезоэлектрических датчиков основано на исполь­зовании пьезоэлектрического эффекта (пьезоэффекта), заключаю­щегося в том, что при сжатии или растяжении некоторых кристал­лов на их гранях появляется электрический заряд, величина ко­торого пропорциональна действующей силе.

Пьезоэффект обратим, т. е. приложенное электрическое на­пряжение вызывает деформацию пьезоэлектрического образца - сжатие или растяжение его соответственно знаку приложенного напряжения. Это явление, называемое обратным пьезоэффектом, используется для возбуждения и приема акустических колеба­ний звуковой и ультразвуковой частоты.

Используются для измерения сил, давления, вибрации и т.д.

Оптические (фотоэлектрические) датчики

Различают аналоговые и дискретные оптические датчики. У аналоговых датчиков выходной сигнал изменяется пропорционально внешней освещенности. Основная область применения – автоматизированные системы управления освещением.

Датчики дискретного типа изменяют выходное состояние на противоположное при достижении заданного значения освещенности.

Фотоэлектрические датчики могут быть применены практически во всех отраслях промышленности. Датчики дискретного действия используются как своеобразные бесконтактные выключатели для подсчета, обнаружения, позиционирования и других задач на любой технологической линии.

, регистрирует изменение светового потока в контролируемой области, связанное с изменением положения в пространстве каких-либо движущихся частей механизмов и машин, отсутствия или присутствия объектов. Благодаря большим расстояниям срабатывания оптические бесконтактные датчики нашли широкое применение в промышленности и не только.

Оптический бесконтактный датчик состоит из двух функциональных узлов, приемника и излучателя. Данные узлы могут быть выполнены как в одном корпусе, так и в различных корпусах.

По методу обнаружения объекта фотоэлектрические датчики подразделяются на 4 группы:

1) пересечение луча - в этом методе передатчик и приемник разделены по разным корпусам, что позволяет устанавливать их напротив друг друга на рабочем расстоянии. Принцип работы основан на том, что передатчик постоянно посылает световой луч, который принимает приемник. Если световой сигнал датчика прекращается, в следствии перекрытия сторонним объектом, приемник немедленно реагирует меняя состояние выхода.

2) отражение от рефлектора - в этом методе приемник и передатчик датчика находятся в одном корпусе. Напротив датчика устанавливается рефлектор (отражатель). Датчики с рефлектором устроены так, что благодаря поляризационному фильтру они воспринимают отражение только от рефлектора. Это рефлекторы, которые работают по принципу двойного отражения. Выбор подходящего рефлектора определяется требуемым расстоянием и монтажными возможностями.

Посылаемый передатчиком световой сигнал отражаясь от рефлектора попадает в приемник датчика. Если световой сигнал прекращается, приемник немедленно реагирует, меняя состояние выхода.

3) отражение от объекта - в этом методе приемник и передатчик датчика находятся в одном корпусе. Во время рабочего состояния датчика все объекты, попадающие в его рабочую зону, становятся своеобразными рефлекторами. Как только световой луч отразившись от объекта попадает на приемник датчика, тот немедленно реагирует, меняя состояние выхода.

4) фиксированное отражение от объекта -принцип действия датчика такой же как и у "отражение от объекта" но более чутко реагирующий на отклонение от настройки на объект. Например, возможно детектирование вздутой пробки на бутылке с кефиром, неполное наполнение вакуумной упаковки с продуктами и т.д.

По своему назначению фотодатчики делятся на две основные группы: датчики общего применения и специальные датчики. К специальным, относятся типы датчиков, предназначенные для решения более узкого круга задач. К примеру, обнаружение цветной метки на объекте, обнаружение контрастной границы, наличие этикетки на прозрачной упаковке и т.д.

Задача датчика обнаружить объект на расстоянии. Это расстояние варьируется в пределах 0,3мм-50м, в зависимости от выбранного типа датчика и метода обнаружения.

Микроволновые датчики

На смену кнопочно - релейным пультам приходят микропроцессорные автоматические системы управления технологическим процессом (АСУ ТП) высочайшей производительности и надежности, датчики оснащаются цифровыми интерфейсами связи, однако это не всегда приводит к повышению общей надежности системы и достоверности ее работы. Причина заключается в том, что сами принципы действия большинства известных типов датчиков накладывают жесткие ограничения на условия, в которых они могут использоваться.

Например, для слежения за скоростью движения промышленных механизмов широко применяются бесконтактные (емкостные и индуктивные), а также тахогенераторные устройства контроля скорости (УКС). Тахогенераторные УКС имеют механическую связь с движущимся объектом, а зона чувствительности бесконтактных приборов не превышает нескольких сантиметров.

Все это не только создает неудобства при монтаже датчиков, но и существенно затрудняет использование этих приборов в условиях пыли, которая налипает на рабочие поверхности, вызывая ложные срабатывания. Перечисленные типы датчиков не способны напрямую контролировать объект (например, ленту конвейера) - они настраиваются на движение роликов, крыльчаток, натяжных барабанов и т. д. Выходные сигналы некоторых приборов настолько слабы, что лежат ниже уровня промышленных помех от работы мощных электрических машин.

Аналогичные трудности возникают при использовании традиционных сигнализаторов уровня - датчиков наличия сыпучего продукта. Такие устройства необходимы для своевременного отключения подачи сырья в производственные емкости. К ложным срабатываниям приводит не только налипание и пыль, но и прикосновение потока продукта при его поступлении в бункер. В неотапливаемых помещениях на работу датчиков влияет окружающая температура. Ложные срабатывания сигнализаторов вызывают частые остановки и запуски нагруженного технологического оборудования - основную причину его аварий, приводят к завалам, обрыву конвейеров, возникновению пожаро- и взрывоопасных ситуаций.

Указанные проблемы несколько лет назад привели к разработке принципиально новых типов приборов - радиолокационных датчиков контроля скорости, датчиков движения и подпора, работа которых основана на взаимодействии контролируемого объекта с радиосигналом частотой около 10 10 Гц.

Использование микроволновых методов контроля за состоянием технологического оборудования позволяет полностью избавиться от недостатков датчиков традиционных типов.

Отличительными особенностями этих устройств являются:

Отсутствие механического и электрического контакта с объектом (средой), расстояние от датчика до объекта может составлять несколько метров;

Непосредственный контроль объекта (транспортерной ленты, цепи) а не их приводов, натяжных барабанов и т. д.;

Малое энергопотребление;

Нечувствительность к налипанию продукта за счет больших рабочих расстояний;

Высокая помехоустойчивость и направленность действия;

Разовая настройка на весь срок службы;

Высокая надежность, безопасность, отсутствие ионизирующих излучений.

Принцип действия датчика основан на изменении частоты радиосигнала, отраженного от движущегося объекта. Это явление ("эффект Допплера" ) широко используется в радиолокационных системах для дистанционного измерения скорости. Движущийся объект вызывает появление электрического сигнала на выходе микроволнового приемо-передающего модуля.

Так как уровень сигнала зависит от свойств отражающего объекта, датчики движения могут использоваться для того, чтобы сигнализировать об обрыве цепи (ленты), наличии на конвейерной ленте каких-либо предметов или материалов. Лента имеет гладкую поверхность и низкий коэффициент отражения. Когда мимо датчика, установленного над рабочей веткой транспортера, начинает двигаться продукт, увеличивая коэффициент отражения, прибор сигнализирует о движении, то есть, фактически о том, что лента не пуста. По длительности выходного импульса можно на значительном расстоянии судить о размере перемещаемых предметов, производить селекцию и т.д.

При необходимости заполнить какую-либо емкость (от бункера до шахты) можно точно определить момент окончания засыпки - опущенный на определенную глубину датчик будет показывать движение наполнителя до тех пор, пока не будет засыпан.

Конкретные примеры использования микроволновых датчиков движения в различных отраслях промышленности определяются ее спецификой, но в целом они способны решать самые разнообразные задачи безаварийной эксплуатации оборудования и повысить информативность автоматизированных систем управления.

Список использованных источников

1) Е.М. Гордин, Ю.Ш. Митник, В.А. Тарлинский

Основы автоматики и вычислительной техники

Москва «Машиностроение», 1978

2) Густав Олссон, Джангуидо Пиани

Цифровые системы автоматизации и управления

СПб.: Невский Диалект, 2001

3) В.В.Сазонов Методические указания к выполнению лабораторной работы

«Исследование реостатного датчика линейных перемещений»

4) Чугайнов Н.Г. Реферат «Температурные датчик», Красноярск 2003

5) Федосов А. В. Реферат «Датчики скорости» - Москва 2003

6) Д. Н. Шестаков, генеральный директор ООО "ПромРадар"

Микроволновые датчики промышленного применения

7) Журнал «Современная электроника» 6, 2006

8) Каталог предприятия «Сенсор»

9) Компоненты OMRON / Фотоэлектрические датчики

Автор статьи : Сергей Никулин, преподаватель УО "Гомельский государственный политехнический колледж " .
Loading...Loading...