Простые и составные числа, свойства простых чисел. Простые и составные числа — Гипермаркет знаний

>>Математика:Простые и составные числа

4. Простые и составные числа

Число 7 делится только на 1 и само на себя. Другими словами, число 7 имеет только два делителя: 1 и 7. У числа 9 три делителя: 1, 3 и 9. Число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18.

Такие числа, как 9 и 18, называют составными числами, а такие, как 7, - простыми числами.

Натуральное число называют простым, если оно имеет только два делителя: единицу и само это число. Натуральное число называют составным, если оно имеет более двух делителей.

Число 1 имеет только один делитель: само это число. Поэтому его не относят ни к составным, ни к простым числам.

Первыми десятью простыми числами являются 2, 3, 5, 7, 11, 13, 17,19, 23, 29. На форзаце учебника приведена таблица простых чисел от 2 до 997.

Число 78 составное, потому что, кроме 1 и 78, оно делится, например, еще на 2. Так как 78:2 = 39, то 78=2*39. Говорят, что число 78 разложено на множители 2 и 39. Любое составное число можно разложить на два множителя, каждый из которых больше 1. Простое число так разложить на множители нельзя.

? Какие натуральные числа называют простыми? Какие натуральные числа называют составными? Почему число 1 не является ни простым, ни составным?

К 88. Сколько делителей имеет каждое из чисел: 31,26,100?

89. С помощью таблицы простых чисел, помещенной на форзаце учебника , определите, какие из чисел 101, 121, 253, 409, 561, 563, 863, 997 являются простыми, а какие составными.

90. Докажите, что числа 2968, 3600, 888 888, 676 767 являются составными.

91. Может ли произведение двух простых чисел быть:

а) простым числом;

б) составным числом?

92. Может ли площадь квадрата выражаться простым числом, если длина его стороны выражается натуральным числом?

93. Известно, что число m делится на 9. Простым или составным является число m?

94. Разложите на два множителя числа: 38; 77; 145; 159.

95. Сколькими способами можно разложить на два множителя числа 18; 42; 55? Способы, при которых произведения отличаются только порядком

множителей, считайте за один способ.

96. Верно ли, что все четные числа являются составными?

97. Может ли выражаться простым числом объем куба, длина ребра которого выражается натуральным числом?

П 98. Вычислите устно:
а) 0,014-1,1+0,09; 8,1 + 2,99 + 1,01; 1,88+3,7+0,12; 2,8 + 1,85 + 2,15; 1,07 + 0,88+1,93;

б) 15 - 2,3; 0,3-0,29; 7-0,2; 6-2,75; 16,4-4;

в) 2,5-2,7-4; 3,9-0,5-2; 1,25-1,9-8; 4-5,6-0,25; 0,5-30-0,1;

г) 1:10; 8,08:8; 9:100; 6,73:10; 0,7:0,01.

99. Найдите пропущенные числа, если а = 33; 42; 75:

100. Выразите в процентах числа: 0,01; 0,29; 0,8; 1.

101. Выразите в виде десятичных дробей: 2%, 5%, 10%, 20%, 50%, 68%, 100%, 130%.

102. Длина и ширина прямоугольного параллелепипеда выражаются натуральным числом сантиметров, а высота равна 15 см. Можно ли утверждать, что объем (в кубических сантиметрах) этого параллелепипеда выражается числом:

а) кратным 2; б) кратным 3; в) кратным 5?

103. Какую цифру нужно приписать к числу 10 слева и справа, чтобы получилось четырехзначное число , делящееся: а) на 9; б) на 3; в) на 6?

104. Выпишите из чисел 215 783, 3 289 775, 21 112 221, 44 856, 555 444, 757 575, 835 743 те, которые:
а) кратны 3; в) делятся без остатка на 3 и на 5;
б) кратны 9; г) кратны 9 и 2.

105. Верно ли, что если число оканчивается цифрой 6, то оно делится на 6? Верно ли, что если число делится на 6, то его запись оканчивается цифрой 6?

106. Какие цифры можно поставить вместо звездочки, чтобы число делилось без остатка на 3 и на 5:

а) 241*; б) 1734*; в) 43*5?

107. Стакан вмещает 210 г крупы. Крупой наполнили стакана. Сколько граммов крупы насыпали в стакан?

М 108. Дочь пообещала: «Я схожу в булочную и вымою посуду». Можно ли обещание считать выполненным, если дочь:

а) вымыла посуду, но не сходила в булочную;

б) сходила в булочную и не вымыла посуду;

в) и вымыла посуду, и сходила в булочную;

в) не вымыла посуду и не была в булочной?

Подумайте, в чем сходство этой задачи с задачей нахождения решений неравенства 2<х<6 среди чисел 1; 3; 5; 7.

Д 109. Докажите, что числа 575, 10 053, 3627, 565 656 являются составными.

110. С помощью таблицы простых чисел, помещенной на форзаце учебника, выберете из чисел 122, 132, 153, 157, 187, 499, 550, 621, 881, 865 и 909 простые числа.

111. Запишите все делители числа 90. Выпишите из них те, которые являются простыми числами.

112. Разложите на два множителя всеми возможными способами числа 30, 33, 42, 99. Способы, при которых произведения отличаются только порядком множителей, считайте за один способ.

113. Периметр прямоугольника 66 дм. Длина его одной стороны составляет периметра. Найдите площадь прямоугольника.

114. Найдите значение выражения (15,964:5,2 -1,2) 0,1.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Рефераты, домашняя работа по математике скачать , учебники скатать бесплатно, онлайн уроки, вопросы и ответы

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки а имеет по крайней мере два делителя — единицу и само число а . Действительно, а:1 = а, а:а = 1.

Число 5 имеет только два делителя — числа 1 и 5. Только два делителя имеют также, в частности, числа 2, 7, 11, 13. Такие числа именуются простыми.

Натуральное число называют простым , если оно имеет только два натуральных делителя : единицу и само это число.

Для комфорта была сформирована таблица простых чисел . Число два - минимальное простое число. Заметим, что это единственное чётное простое число. Фактически, все другие чётные числа имеют минимально три делителя: число 1, число 2 и само число.

Простых чисел бесчисленное множество . Максимального простого числа не бывает.

У чисел 6, 15, 49, 1000 есть больше двух делителей.

Например: 10=2 .5;

80 = 2 . 2 . 2 . 2 . 5;

81= 3 . 3 . 3 . 3;

200 = 2 .2 .2 .5 .5.

Заметим, что любые два разложения числа на простые множители состоят из одних и тех же множителей и могут отличаться только их последовательностью. Как правило, произведение одинаковых множителей в разложении числа на простые множители заменяют степенью .

Например :

18 = 2 . 3 2 ; 80 = 2 4 . 5; 81 = 3 4 ; 200 = 2 3 - 5 2 .

При разложении числа на простые множители целесообразно использовать схему, которую продемонстрируем на примере разложения числа 2940:

1) 2940 поделится на 2, 2940: 2 = 1470 ;

2) 1470 поделится на 2, 1470: 2 = 735 ;

3) 735 не поделится на 2, но поделится на 3, 735: 3 = 245 ;

4) 245 не поделится на 3, но поделится на 5, 245: 5 = 49 ;

5) 49 не поделится на 5, но поделится на 7, 49: 7 = 7 ;

6) 7 поделится на 7, 7: 7 = 1 .

Таким образом , 2940 = 2 . 1470 = 2 . 2 . 735 = 2 . 2 . 3 . 245 = = 2 . 2 . 3 . 5 . 49 = 2 . 2 . 3 . 5 . 7 . 7 = 2 2 . 3 . 5 . 7 2 .

Если простые числа записать в порядке их возрастания, то образуется последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17…….

Последовательность простых чисел имеет много интересных свойств и тайн. Например, ученые Древней Эллады отметили, что среди простых чисел много таких разность которых равна двум, например: 3 и 5; 5 и 7; 11 и 13; 17 и 19 и т.д. Подобные пары чисел именуют простыми числами близнецами. Уже более 25 веков ученные стараются найти существуют ли максимальное число близнец, но до сих пор ответ на этот вопрос не найден.

«Простые и составные числа» — Учебник по математике 6 класс (Виленкин)

Краткое описание:


В данном разделе Вы узнаете, какие числа называют простыми, а какие составными, научитесь быстро определять какое перед Вами число.
Повторим: все натуральные числа больше 1 можно поделить на две части: простые и составные. Простое число – это натуральное число, у которого есть только два делителя, оно делится на единицу и на самого себя (11, 9, 5). Наименьшее простое число – это ужас отличника — число 2.
Составные числа имеют больше двух делителей (6 делится на 6, на 1, на 2, на 3).
Число 1 делится только на 1, оно никакое — ни простое, ни составное.
Как быстро узнать, что двухзначное или трехзначное число является простым или составным? Нужно найти еще хотя бы один делитель, кроме 1 и его самого. Для этого используем уже выученные признаки деления. Какое число 368? Оно делится на 2, значит, имеет больше двух делителей (делится на 1, на 368 и на 2).
Иногда встречается такое число, по которому тяжело сразу же сказать какое оно. Тогда, на помощь придет таблица простых чисел. Смотрим, есть ли в таблице 121? Нет, значит, это число составное. Но какие у него делители? Число 121 делиться на 121, 1, а еще на число 11. Давайте проверим 11*11=121. Еще такие же числа 169 (13*13=169), 289 (17*17=289), 361 (19*19). Попробуйте для начала запомнить их.


В этой статье мы изучим простые и составные числа . Сначала дадим определения простых и составных чисел, а также приведем примеры. После этого докажем, что простых чисел бесконечно много. Далее запишем таблицу простых чисел, и рассмотрим методы составления таблицы простых чисел, особо тщательно остановимся на способе, получившем название решето Эратосфена. В заключение осветим основные моменты, которые нужно учитывать при доказательстве того, что данное число является простым или составным.

Навигация по странице.

Простые и составные числа – определения и примеры

Понятия простые числа и составные числа относятся к , которые больше единицы. Такие целые числа, в зависимости от количества их положительных делителей, подразделяются на простые и составные числа. Таким образом, чтобы понять определения простых и составных чисел , нужно хорошо представлять себе, что такое делители и кратные .

Определение.

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и 1 .

Определение.

Составные числа – это целые числа, большие единицы, которое имеют, по крайней мере, три положительных делителя.

Отдельно заметим, что число 1 не относится ни к простым, ни к составным числам. Единица имеет только один положительный делитель, которым является само число 1 . Этим число 1 отличается от всех остальных целых положительных чисел, которые имеют не менее двух положительных делителей.

Учитывая, что целые положительные числа – это , и что единица имеет только один положительный делитель, можно привести другие формулировки озвученных определений простых и составных чисел.

Определение.

Простыми числами называют натуральные числа, которые имеют только два положительных делителя.

Определение.

Составными числами называют натуральные числа, имеющие более двух положительных делителей.

Отметим, что каждое целое положительное число, большее единицы, есть либо простое, либо составное число. Иными словами, не существует ни одного такого целого числа, которое не являлось бы ни простым, ни составным. Это следует из свойства делимости , которое гласит, что числа 1 и a всегда являются делителями любого целого числа a .

Исходя из информации предыдущего абзаца, можно дать следующее определение составных чисел.

Определение.

Натуральные числа, которые не являются простыми, называются составными .

Приведем примеры простых и составных чисел .

В качестве примеров составных чисел приведем 6 , 63 , 121 и 6 697 . Это утверждение тоже нуждается в пояснении. Число 6 имеет кроме положительных делителей 1 и 6 еще и делители 2 и 3 , так как 6=2·3 , поэтому 6 – действительно составное число. Положительными делителями 63 являются числа 1 , 3 , 7 , 9 , 21 и 63 . Число 121 равно произведению 11·11 , поэтому его положительными делителями являются 1 , 11 и 121 . А число 6 697 составное, так как его положительными делителями кроме 1 и 6 697 являются еще и числа 37 и 181 .

В заключение этого пункта хочется еще обратить внимание на то, что простые числа и взаимно простые числа – это далеко ни одно и то же.

Таблица простых чисел

Простые числа, для удобства их дальнейшего использования, записывают в таблицу, которую называют таблицей простых чисел. Ниже представлена таблица простых чисел до 1 000 .

Возникает логичный вопрос: «Почему мы заполнили таблицу простых чисел только до 1 000 , разве нельзя составить таблицу всех существующих простых чисел»?

Ответим сначала на первую часть этого вопроса. Для большинства задач, при решении которых придется использовать простые числа, нам будет вполне достаточно простых чисел в пределах тысячи. В остальных случаях, скорее всего, придется прибегать к каким-либо специальным приемам решения. Хотя, несомненно, мы можем составить таблицу простых чисел до сколь угодно большого конечного целого положительного числа, будь то 10 000 или 1 000 000 000 , в следующем пункте мы поговорим о методах составления таблиц простых чисел, в частности, разберем способ, получивший название .

Теперь разберемся с возможностью (а точнее с невозможностью) составления таблицы всех существующих простых чисел. Мы не можем составить таблицу всех простых чисел, потому что простых чисел бесконечно много. Последнее утверждение представляет собой теорему, которую мы докажем после следующей вспомогательной теоремы.

Теорема.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство.

Пусть a – натуральное число, большее единицы, и b – наименьший положительный и отличный от единицы делитель числа a . Докажем, что b – простое число методом от противного.

Предположим, что b – составное число. Тогда существует делитель числа b (обозначим его b 1 ), который отличен как от 1 , так и от b . Если также учесть, что абсолютная величина делителя не превосходит абсолютной величины делимого (это мы знаем из свойств делимости), то должно выполняться условие 1

Так как число a делится на b по условию, и мы сказали, что b делится на b 1 , то понятие делимости позволяет говорить о существовании таких целых чисел q и q 1 , что a=b·q и b=b 1 ·q 1 , откуда a= b 1 ·(q 1 ·q) . Из следует, что произведение двух целых чисел есть целое число, тогда равенство a=b 1 ·(q 1 ·q) указывает на то, что b 1 является делителем числа a . Учитывая полученные выше неравенства 1

Теперь мы можем доказать, что простых чисел бесконечно много.

Теорема.

Простых чисел бесконечно много.

Доказательство.

Предположим, что это не так. То есть, предположим, что простых чисел всего n штук, и эти простые числа есть p 1 , p 2 , …, p n . Покажем, что мы всегда можем найти простое число, отличное от указанных.

Рассмотрим число, p равное p 1 ·p 2 ·…·p n +1 . Понятно, что это число отлично от каждого из простых чисел p 1 , p 2 , …, p n . Если число p - простое, то теорема доказана. Если же это число составное, то в силу предыдущей теоремы существует простой делитель этого числа (обозначим его p n+1 ). Покажем, что этот делитель не совпадает ни с одним из чисел p 1 , p 2 , …, p n .

Если бы это было не так, то по свойствам делимости произведение p 1 ·p 2 ·…·p n делилось бы на p n+1 . Но на p n+1 делится и число p , равное сумме p 1 ·p 2 ·…·p n +1 . Отсюда следует, что на p n+1 должно делиться второе слагаемое этой суммы, которое равно единице, а это невозможно.

Так доказано, что всегда может быть найдено новое простое число, не заключающееся среди любого количества наперед заданных простых чисел. Следовательно, простых чисел бесконечно много.

Итак, в силу того, что простых чисел бесконечно много, при составлении таблиц простых чисел всегда ограничивают себя сверху каким-либо числом, обычно, 100 , 1 000 , 10 000 и т.д.

Решето Эратосфена

Сейчас мы обсудим способы составления таблиц простых чисел. Предположим, что нам нужно составить таблицу простых чисел до 100 .

Самым очевидным методом решения этой задачи является последовательная проверка целых положительных чисел, начиная с 2 , и заканчивая 100 , на наличие положительного делителя, который больше 1 и меньше проверяемого числа (из свойств делимости мы знаем, что абсолютная величина делителя не превосходит абсолютной величины делимого, отличного от нуля). Если такой делитель не найден, то проверяемое число является простым, и оно заносится в таблицу простых чисел. Если же такой делитель найден, то проверяемое число является составным, оно НЕ заносится в таблицу простых чисел. После этого происходит переход к следующему числу, которое аналогично проверяется на наличие делителя.

Опишем несколько первых шагов.

Начинаем с числа 2 . Число 2 не имеет положительных делителей, кроме 1 и 2 . Следовательно, оно простое, поэтому, заносим его в таблицу простых чисел. Здесь следует сказать, что 2 является наименьшим простым числом. Переходим к числу 3 . Его возможным положительным делителем, отличным от 1 и 3 , является число 2 . Но 3 на 2 не делится, поэтому, 3 – простое число, и его также нужно занести в таблицу простых чисел. Переходим к числу 4 . Его положительными делителями, отличными от 1 и 4 , могут быть числа 2 и 3 , проверим их. Число 4 делится на 2 , поэтому, 4 – составное число, и его не нужно заносить в таблицу простых чисел. Обратим внимание на то, что 4 – наименьшее составное число. Переходим к числу 5 . Проверяем, являются ли его делителем хотя бы одно из чисел 2 , 3 , 4 . Так как 5 не делится ни на 2 , ни на 3 , ни на 4 , то оно простое, и его надо записать в таблицу простых чисел. Дальше происходит переход к числам 6 , 7 , и так далее до 100 .

Такой подход к составлению таблицы простых чисел является далеко не идеальным. Так или иначе, он имеет право на существование. Отметим, что при этом способе построения таблицы целых чисел можно использовать признаки делимости , которые немного ускорят процесс поиска делителей.

Существует более удобный способ для составления таблицы простых чисел, называемый . Присутствующее в названии слово «решето» не случайно, так как действия этого метода помогают как бы «просеять» сквозь решето Эратосфена целые числа, большие единицы, чтобы отделить простые от составных.

Покажем решето Эратосфена в действии при составлении таблицы простых чисел до 50 .

Сначала записываем по порядку числа 2, 3, 4, …, 50 .


Первое записанное число 2 является простым. Теперь от числа 2 последовательно перемещаемся вправо на два числа и зачеркиваем эти числа, пока не доберемся до конца составляемой таблицы чисел. Так будут вычеркнуты все числа, кратные двум.

Первым следующим за 2 невычеркнутым числом является 3 . Это число простое. Теперь от числа 3 последовательно перемещаемся вправо на три числа (учитывая и уже зачеркнутые числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные трем.

Первым следующим за 3 невычеркнутым числом является 5 . Это число простое. Теперь от числа 5 последовательно перемещаемся вправо на 5 чисел (учитываем и зачеркнутые ранее числа) и вычеркиваем их. Так будут вычеркнуты все числа, кратные пяти.

Дальше вычеркиваем числа, кратные 7 , затем, кратные 11 и так далее. Процесс заканчивается, когда не останется чисел для вычеркивания. Ниже показана законченная таблица простых чисел до 50 , полученная с помощью решета Эратосфена. Все незачеркнутые числа являются простыми, а все зачеркнутые числа – составными.

Давайте еще сформулируем и докажем теорему, которая позволит ускорить процесс составления таблицы простых чисел при помощи решета Эратосфена.

Теорема.

Наименьший положительный и отличный от единицы делитель составного числа a не превосходит , где - из a .

Доказательство.

Обозначим буквой b наименьший и отличный от единицы делитель составного числа a (число b является простым, что следует из теоремы, доказанной в самом начале предыдущего пункта). Тогда существует такое целое число q , что a=b·q (здесь q – положительное целое число, что следует из правил умножения целых чисел), причем (при b>q нарушится условие, что b – наименьший делитель числа a , так как q также является делителем числа a в силу равенства a=q·b ). Умножив обе части неравенства на положительное и большее единицы целое число b (это нам позволяют сделать ), получаем , откуда и .

Что же нам дает доказанная теорема, касательно решета Эратосфена?

Во-первых, вычеркивание составных чисел, кратных простому числу b следует начинать с числа, равного (это следует из неравенства ). Например, вычеркивание чисел, кратных двум, следует начинать с числа 4 , кратных трем – с числа 9 , кратных пяти – с числа 25 , и так далее.

Во-вторых, составление таблицы простых чисел до числа n с помощью решета Эратосфена можно считать законченным тогда, когда будут вычеркнуты все составные числа, кратные простым числам, не превосходящим . В нашем примере n=50 (так как мы составляем таблицу простых чисел до 50 ) и , поэтому решето Эратосфена должно отсеять все составные числа, кратные простым числам 2 , 3 , 5 и 7 , которые не превосходят арифметического квадратного корня из 50 . То есть, нам дальше не нужно заниматься поиском и вычеркиванием чисел, кратных простым числам 11 , 13 , 17 , 19 , 23 и так далее до 47 , так как они уже будут вычеркнуты, как кратные меньшим простым числам 2 , 3 , 5 и 7 .

Данное число простое или составное?

Некоторые задания требуют выяснения, является ли данное число простым или составным. В общем случае эта задача далеко не проста, особенно для чисел, запись которых состоит из значительного количества знаков. В большинстве случаев приходится искать какой-либо специфический способ ее решения. Однако мы попробуем дать направление ходу мыслей для несложных случаев.

Несомненно, можно попробовать воспользоваться признаками делимости для доказательства того, что данное число является составным. Если, к примеру, некоторый признак делимости показывает, что данное число делится на некоторое целое положительное число большее единицы, то исходное число является составным.

Пример.

Докажите, что число 898 989 898 989 898 989 составное.

Решение.

Сумма цифр данного числа равна 9·8+9·9=9·17 . Так как число, равное 9·17 делится на 9 , то по признаку делимости на 9 можно утверждать, что исходное число также делится на 9 . Следовательно, оно составное.

Существенный недостаток такого подхода заключается в том, что признаки делимости не позволяют доказать простоту числа. Поэтому при проверке числа на то, является ли оно простым или составным, нужно действовать иначе.

Самый логичный подход состоит в переборе всех возможных делителей данного числа. Если ни один из возможных делителей не будет истинным делителем данного числа, то это число будет простым, в противном случае – составным. Из теорем, доказанных в предыдущем пункте, следует, что делители данного числа a нужно искать среди простых чисел, не превосходящих . Таким образом, данное число a можно последовательно делить на простые числа (которые удобно брать из таблицы простых чисел), пытаясь найти делитель числа a . Если будет найден делитель, то число a – составное. Если же среди простых чисел, не превосходящих , не окажется делителя числа a , то число a – простое.

Пример.

Число 11 723 простое или составное?

Решение.

Выясним, до какого простого числа могут быть делители числа 11 723 . Для этого оценим .

Достаточно очевидно, что , так как 200 2 =40 000 , а 11 723<40 000 (при необходимости смотрите статью сравнение чисел ). Таким образом, возможные простые делители числа 11 723 меньше числа 200 . Это уже значительно облегчает нашу задачу. Если бы мы этого не знали, то нам бы пришлось перебирать все простые числа не до 200 , а вплоть до числа 11 723 .

При желании можно оценить более точно. Так как 108 2 =11 664 , а 109 2 =11 881 , то 108 2 <11 723<109 2 , следовательно, . Таким образом, любое из простых чисел, меньших 109 , потенциально является простым делителем данного числа 11 723 .

Теперь мы будем последовательно делить число 11 723 на простые числа 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 . Если число 11 723 разделится нацело на одно из записанных простых чисел, то оно будет составным. Если же оно не делится ни на одно из записанных простых чисел, то исходное число простое.

Не будем описывать весь этот монотонный и однообразный процесс деления. Сразу скажем, что 11 723

На этом уроке мы познакомимся с вами с двумя видами чисел. Они будут различаться количеством делителей. Плюс узнаем, как можно разложить составное число на простые числа, изучим основную теорему арифметики и увидим решето Эратосфена. Давайте же начнём.

Lorem ipsum dolor sit amet, consectetur adipisicing elit. Adipisci autem beatae consectetur corporis dolores ea, eius, esse id illo inventore iste mollitia nemo nesciunt nisi obcaecati optio similique tempore voluptate!

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae? Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla?

Эта информация доступна зарегистрированным пользователям

Простые и составные числа

Если мы попытаемся разделить число 11 на какие-нибудь числа без остатка, то у нас получится это сделать только если делить мы будем на 1 или на 11 . Получается, что число 11 имеет только два делителя: 1 и 11

Если мы поступим так же с числами 9 и 18 , то узнаем, что у числа 9 три делителя: 1, 3 и 9 , а число 18 имеет шесть делителей: 1, 2, 3, 6, 9 и 18

Первое число, у которого всего два делителя- это простое число. А вот числа, как 9 и 18 , называют составными числами.

Натуральное число простое, если оно имеет делителями только единицу и само себя.

Если натуральное число имеет больше двух делителей, то оно называется составным.

Есть число которое не относится ни к первым, ни ко вторым. Это число 1 . Оно имеет всего один делитель- само это число.

Те числа, которые мы используем при счете, в итоге можно разделить на три разные группы по количеству делителей:

Простые - имеют всегда пару делителей: единицу и само себя, например: 2, 3, 5, 7, 11, 17, 19, 23 и т.д.

Составные числа - имеют всегда три или больше делителей, например: 4, 6, 8,10,15, 22 и т.д.

Единица (1 ) со своим единственным делителем.

Пример 1

Даны числа: 1, 7, 10, 12, 13, 24 . Найдите все делители для каждого из чисел. Выпишите числа, имеющие:

А) один делитель;

Б) два делителя;

В) больше двух делителей.

Решение:

Число 1 имеет один делитель: 1

Число 7 имеет два делителя: 1, 7

Число 10 имеет четыре делителя: 1, 2, 5, 10

Число 12 имеет шесть делителей: 1, 2, 3, 4, 6, 12

Число 13 имеет два делителя: 1, 13

Число 24 имеет восемь делителей: 1, 2, 3, 4, 6, 8, 12, 24

А) один делитель- 1

Б) два делителя- 7, 13

В) больше двух делителей- 10, 12, 24

Таким образом, число 7 и 13 являются простыми, потому что имеют по два делителя. Числа 10 , 12 , 24 являются составными, потому что имеют больше двух делителей.

Пример 2

Даны числа: 2, 4, 17, 21, 28, 30, 42, 55, 127 . Какие из них простые, а какие составные? Найдите все делители для составных чисел.

Решение:

Простые- 2, 17, 127

Составные- 4, 21, 28, 30, 42, 55

Число 4 имеет три делителя: 1, 2, 4

Число 21 имеет четыре делителя: 1, 3, 7, 21

Число 28 имеет шесть делителей: 1, 2, 4, 7, 14, 28

Число 30 имеет восемь делителей: 1, 2, 3, 5, 6, 10, 15, 30

Число 42 имеет восемь делителей: 1, 2, 3, 6, 7, 14, 21, 42

Число 55 имеет четыре делителя: 1, 5, 11, 55

Loading...Loading...